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In this unit we will discuss rectangular coordinate systems in three dimensions, and

we will study the analytic geometry of lines, planes, and other basic surfaces. The second

theme of this unit is the study of vectors. These are the mathematical objects that physi-

cists and engineers use to study forces, displacements, and velocities of objects moving on

curved paths. More generally, vectors are used to represent all physical entities that in-

volve both a magnitude and a direction for their complete description. We will introduce

various algebraic operations on vectors, and we will apply these operations to problems

involving force, work, and rotational tendencies in two and three dimensions. Finally,

we will discuss cylindrical and spherical coordinate systems, which are appropriate in

problems that involve various kinds of symmetries and also have specific applications in

navigation and celestial mechanics.

1 THREE-DIMENSIONAL SPACE

In this section we will discuss coordinate systems in three-dimensional space and some

basic facts about surfaces in three dimensions.

1.1 RECTANGULAR COORDINATE SYSTEM

In the remainder of this unit we will call three-dimensional space 3-space, two-

dimensional space (a plane) 2-space, and one-dimensional space (a line) 1-space. Points
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in 3-space can be placed in one-to-one correspondence with triples of real numbers by

using three mutually perpendicular coordinate lines, called the x-axis, the y-axis, and

the z-axis, (Figure 1.1) positioned so that their origins coincide. The three coordinate

axes form a three-dimensional rectangular coordinate system (or Cartesian coor-

dinate system). The point of intersection of the coordinate axes is called the origin

of the coordinate system.

Figure 1.1

The coordinate axes, taken in pairs, determine three coordinate planes : the xy-

plane, the xz-plane, and the yz-plane (Figure 1.2).

Figure 1.2
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To each point P in 3-space we can assign a triple of real numbers by passing three planes

through P parallel to the coordinate planes and letting a, b, and c be the coordinates of the

intersections of those planes with the x-axis, y-axis, and z-axis, respectively (Figure 1.3).

We call a, b, and c the x-coordinate, y-coordinate, and z-coordinate of P , respectively,

and we denote the point P by (a, b, c) or by P (a, b, c).

Figure 1.3

Figure 1.4 shows the points (4, 5, 6) and (−3, 2,−4).

Figure 1.4

The following are notable facts about three-dimensional rectangular coordinate sys-

tems:
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region description

xy-plane Consists of all points of the form (x, y, 0)

xz-plane Consists of all points of the form (x, 0, z)

yz-plane Consists of all points of the form (0, y, z)

x-axis Consists of all points of the form (x, 0, 0)

y-axis Consists of all points of the form (0, y, 0)

z-axis Consists of all points of the form (0, 0, z)

PLANES PARALLEL TO COORDINATE PLANES

Note that, at any point on the xy-plane, value of z-coordinate is 0. Now consider all

points with z = 1, i.e. all points of the form (x, y, 1). These points are seemed lie 1 unit

above the xy-plane. So they lie on a plane parallel to xy-plane at which z = 1. Similarly,

points of the form (x, y, 2) also lie on a plane parallel to xy- plane, 2 units above it. In

general if c is a constant, the points (x, y, c) lie on a plane parallel to xy-plane and the

points (x, b, z) lie on a plane parallel to xz- plane, where b is a constant. We summarize

these facts as,

points nature of plane

(x, y, 1), (x, y,−2.5), (x, y, k) parallel to xy-plane

(x, 1, z), (x,−2.5, z), (x, k, z) parallel to xz-plane

(1, y, z), (−2.5, y, z), (k, y, z) parallel to yz-plane

Here a, b, c are constants.

Figure 1.5

1.2 SPHERES

The distance between the points P1(x1, y1, z1) and P2(x2, y2, z2) is
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d =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2 (1)

The standard equation of the sphere in 3-space that has center (x0, y0, z0) and radius

r is

(x− x0)2 + (y − y0)2 + (z − z0)2 = r2 (2)

If the terms in (2) are expanded and like terms are collected, then the resulting equa-

tion has the form

x2 + y2 + z2 +Gx+Hy + Iz + J = 0 (3)

which on completing the squares produces an equation of the form

(x− x0)2 + (y − y0)2 + (z − z0)2 = k.

I If k > 0, then the graph of this equation is a sphere with center (x0, y0, z0)

and radius
√
k.

I If k = 0, then the sphere has radius zero, so the graph is the single point

(x0, y0, z0).

I If k < 0, the equation is not satisfied by any values of x, y, and z (why?), so

it has no graph.

1.3 CYLINDRICAL SURFACES

We know that the graph of the equation

y = x2

Jeeja A. V. jeejamath@gmail.com



7

Figure 1.6

in an xy-coordinate system is a parabola. Now consider the same equation in 3-space.

Here the equation does not contain the variable z. That means, whatever be the value of

z, we have y = x2. In other words, at any point on the graph of this equation in 3- space,

the value of y is x2, but any arbitrary value can be chosen for z and so for each value of

z we get the parabola.

For example when z = 1, the graph is the parabola parallel to y = x2 but 1 unit above

the xy-plane. Similarly, when z = −3, the parabola will be 3 units below xy-plane.

Figure 1.7

In general we get parabolas to the parabola in xy-plane, above and below it. That is

we can obtain the graph of y = x2 in an xyz-coordinate system by first graphing

the equation in the xy-plane and then translating that graph parallel to the z-

axis to generate the entire graph.
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Figure 1.8

The process of generating a surface by translating a plane curve parallel to some line

is called extrusion, and surfaces that are generated by extrusion are called cylindrical

surfaces.

Theorem1.1 (Cylindrical Surface)

An equation that contains only two of the variables x, y, and z represents a cylindri-

cal surface in an xyz-coordinate system. The surface can be obtained by graphing

the equation in the coordinate plane of the two variables that appear in the equation

and then translating that graph parallel to the axis of the missing variable.

Problem 1.1

Sketch the graph of x2 + z2 = 1 in 3-space.

Solution. Since y does not appear in this equation, the graph is a cylindrical surface

generated by translating the plane curve x2 + z2 = 1 parallel to the y-axis. In the xz-

plane the graph of the equation x2 + z2 = 1 is a circle. Thus, in 3-space the graph is a

right circular cylinder along the y-axis.
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Figure 1.9

Problem 1.2

Sketch the graph of z = sin y in 3-space.

Solution. In 2-space, graph of z = sin y is the sine curve in yz-plane. In 3-space the

graph is generated by translating this curve parallel to the x-axis, which is shown in

Figure 1.10.

Figure 1.10

Problem 1.3

Sketch the graph of 2x+ 3y = 6 in 3-space.
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Solution. In 2-space, graph of 2x+ 3y = 6 is the line in xy-plane passing through (3, 0)

and (0, 2). In 3-space the graph is generated by translating this line parallel to the z-

axis, which a plane.

Figure 1.11

Problem 1.4

Sketch the graph of 4x2 + 9z2 = 36 in 3-space.

Solution. In 2-space, graph of 4x2 + 9z2 = 36 is an ellipse in xz-plane. In 3-space the

graph is generated by translating this ellipse parallel to the y-axis, which is an elliptic

cylinder.
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Figure 1.12

Problem 1.5

Sketch the graph of y2 − 4z2 = 4 in 3-space.

Solution. In 2-space, graph of y2 − 4z2 = 4 is a hyperbola in yz-plane. In 3-space the

graph is generated by translating this hyperbola parallel to the x-axis, which is shown in

Figure 1.13.
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Figure 1.13
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2 VECTORS

A particle that moves along a line can move in only two directions, so its direction of

motion can be described by taking one direction to be positive and the other negative.

Thus, the displacement or change in position of the point can be described by a

signed real number. For example, a displacement of 3(= +3) describes a position change

of 3 units in the positive direction, and a displacement of −3 describes a position change

of 3 units in the negative direction. However, for a particle that moves in two dimensions

or three dimensions, a plus or minus sign is no longer sufficient to specify the direction

of motion-other methods are required. One method is to use an arrow, called a vector,

that points in the direction of motion and whose length represents the distance from the

starting point to the ending point; this is called the displacement vector for the motion.

For example, Figure 2.1 shows the displacement vector of a particle that moves from point

A to point B along a circuitous path. Note that the length of the arrow describes the

distance between the starting and ending points and not the actual distance travelled by

the particle. Vectors can be used to describe any physical quantity that involves both a

magnitude and a direction; forces and velocities are important examples.

Figure 2.1

VECTORS VIEWED GEOMETRICALLY

Vectors can be represented geometrically by arrows in 2-space or 3-space; the direction of

the arrow specifies the direction of the vector, and the length of the arrow describes its

magnitude. The tail of the arrow is called the initial point of the vector, and the tip

of the arrow the terminal point. We will denote vectors with lowercase boldface type

such as a, k, v,w, and x. When discussing vectors, we will refer to real numbers as

scalars. Scalars will be denoted by lowercase italic type such as a, k, v, w, and x. Two
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vectors, v and w, are considered to be equal (also called equivalent) if they have the same

length and same direction, in which case we write v = w. Geometrically, two vectors are

equal if they are translations of one another; thus, the three vectors in Figure 2.2 (a) are

equal, even though they are in different positions.

Figure 2.2

If the initial point of v is A and the terminal point is B, then we write v =
−→
AB (see

Figure 2.2 (b)). If the initial and terminal points of a vector coincide, then the vector has

length zero; we call this the zero vector and denote it by 0.

We have learned vectors and operations on vectors in higher secondary classes. We

give a quick review of those topics here.

SUM OF VECTORS

If v and w are vectors, then the sum v + w is the vector from the initial point of v to

the terminal point of w when the vectors are positioned so the initial point of w is at the

terminal point of v.

If v and w are positioned so that they have the same initial point, the sum v + w

coincides with the diagonal of the parallelogram determined by v and w.

Jeeja A. V. jeejamath@gmail.com
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Figure 2.3

SCALAR MULTIPLE OF VECTORS

If v is a nonzero vector and k is a nonzero real number (a scalar), then the scalar multiple

kv is defined to be the vector whose length is |k| times the length of v and whose direction

is the same as that of v if k > 0 and opposite to that of v if k < 0. We define kv = 0 if

k = 0 or v = 0.

We say that v and kv are parallel vectors. The vector (−1)v has the same length

as v but is oppositely directed. We call (−1)v the negative of v and denote it by −v. In

particular, −0 = (−1)0 = 0. We also define

v −w = v + (−w).

Jeeja A. V. jeejamath@gmail.com
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Figure 2.4

VECTORS IN COORDINATE SYSTEMS

If a vector v is positioned with its initial point at the origin of a rectangular coordinate

system, then its terminal point will have coordinates of the form (v1, v2) or (v1, v2, v3),

depending on whether the vector is in 2-space or 3- space.

Figure 2.5
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We call these coordinates the components of v, and we write v in component form

using the bracket notation

v = 〈v1, v2〉 or v = 〈v1, v2, v3〉
↓

2-space
↓

3-space

(4)

In particular, the zero vectors in 2-space and 3-space are

0 = 〈0, 0〉 and 0 = 〈0, 0, 0〉

respectively.

Theorem2.1

Two vectors are equivalent if and only if their corresponding components are equal.

That is if v = 〈v1, v2, v3〉 and w = 〈w1, w2, w3〉, then v = w if and only if v1 =

w1, v2 = w2 and v3 = w3.

NORM OF A VECTOR

The distance between the initial and terminal points of a vector v is called the length,

the norm, or the magnitude of v and is denoted by ‖v‖. If v = 〈v1, v2〉 is a vector in

2-space, then

‖v‖ =
√
v21 + v22 (5)

and the norm of a vector v = 〈v1, v2, v3〉 in 3-space is given by,

‖v‖ =
√
v21 + v22 + v23. (6)

UNIT VECTORS

A vector of length 1 is called a unit vector. In an xy-coordinate system the unit vectors

along the x-and y-axes are denoted by i and j, respectively; and in an xyz-coordinate

system the unit vectors along the x-, y-, and z-axes are denoted by i, j, and k, respectively.

Thus
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i = 〈1, 0〉 , j = 〈0, 1〉 In 2-space

i = 〈1, 0, 0〉 , j = 〈0, 1, 0〉 , k = 〈0, 0, 1〉 . In 3-space

Figure 2.6

Using these unit vectors we represent vectors in 2-space and 3-space as

v = 〈v1, v2〉 2-space

= 〈v1, 0〉+ 〈0, v2〉

= v1 〈1, 0〉+ v2 〈0, 1〉

= v1i + v2j

v = 〈v1, v2, v3〉 3-space

= 〈v1, 0, 0〉+ 〈0, v2, 0〉+ 〈0, 0, v3〉

= v1 〈1, 0, 0〉+ v2 〈0, 1, 0〉+ v3 〈0, 0, 1〉

= v1i + v2j + v3k.

If v is a non zero vector, then

u =
1

‖v‖
v =

v

‖v‖

is a unit vector in the direction of v. The process of multiplying a vector v by the reciprocal

of its length to obtain a unit vector with the same direction is called normalizing v.

Jeeja A. V. jeejamath@gmail.com



19

ARITHMETIC OPERATIONS ON VECTORS

The next theorem shows how to perform arithmetic operations on vectors using compo-

nents.

Figure 2.7 Theorem2.2

If v = 〈v1, v2〉 and w = 〈w1, w2〉 are vectors

in 2- space and k is any scalar, then

I v + w = 〈v1 + w1, v2 + w2〉

I v −w = 〈v1 − w1, v2 − w2〉

I kv = 〈kv1, kv2〉

Similarly, if v = 〈v1, v2, v3〉 and w =

〈w1, w2, w3〉 are vectors in 3-space and k is

any scalar, then

I v + w = 〈v1 + w1, v2 + w2, v3 + w3〉

I v −w = 〈v1 − w1, v2 − w2, v3 − w3〉

I kv = 〈kv1, kv2, kv3〉.

VECTORS WITH INITIAL POINT NOT AT THE ORIGIN

Suppose that P1(x1, y1) and P2(x2, y2) are points in 2-space, then the vector
−−→
P1P2 is given

by
−−→
P1P2 =

−−→
OP2 −

−−→
OP1 = 〈x2, y2〉 − 〈x1, y1〉 = 〈x2 − x1, y2 − y1〉 .

Similarly, if P1(x1, y1, z1) and P2(x2, y2, z2) are points in 3-space, then the vector
−−→
P1P2 is

given by
−−→
P1P2 = 〈x2 − x1, y2 − y1, z2 − z1〉 .

Jeeja A. V. jeejamath@gmail.com
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This table provides some examples of vector notation in 2-space and 3-space.

2-space 3-space

〈2, 3〉 = 2i + 3j 〈2,−3, 4〉 = 2i− 3j + 4k

〈−4, 0〉 = −4i + 0j = −4i 〈0, 3, 0〉 = 3j

〈0, 0〉 = 0i + 0j = 0 〈0, 0, 0〉 = 0i + 0j + 0k = 0

(3i + 2j) + (4i + j) = 7i + 3j (3i + 2j− k)− (4i− j + 2k) = −i + 3j− 3k

5(6i− 2j) = 30i− 10j 2(i + j− k) + 4(i− j) = 6i− 2j− 2k

‖2i− 3j‖ =
√

22 + (−3)2 =
√

13 ‖i + 2j− 3k‖ =
√

12 + 22 + (−3)2 =
√

14

‖v1i + v2j‖ =
√
v21 + v22 ‖〈v1, v2, v3〉‖ =

√
v21 + v22 + v23

VECTORS DETERMINED BY LENGTH AND ANGLE

If v is a nonzero vector with its initial point at the origin of an xy- coordinate system,

and if θ is the angle from the positive x-axis to the radial line through v, then v can be

expressed in trigonometric form as

v = ‖v‖ 〈cos θ, sin θ〉 or v = ‖v‖ cos θi + ‖v‖ sin θj (7)

In this case, is given by

x− component = ‖v‖ cos θ

y − component = ‖v‖ sin θ.

In particular, if u is a unit vector, then

u = 〈cos θ, sin θ〉 or v = cos θi + sin θj. (8)

Jeeja A. V. jeejamath@gmail.com



21

Figure 2.8

Problem 2.1

Suppose that two forces are applied to an eye bracket, as shown in the figure. Find

the magnitude of the resultant and the angle θ that it makes with the positive

x-axis.

Solution. Note that F1 makes an angle of 30◦ with the positive x-axis and F2 makes an

angle of 30◦ + 40◦ = 70◦ with the positive x-axis. Since we are given that ‖F1‖ = 200N

and ‖F2‖ = 300N , we have

F1 = 200 〈cos 30◦, sin 30◦〉 = 200

〈√
3

2
,
1

2

〉
=
〈

100
√

3, 100
〉

and

F2 = 300 〈cos 70◦, sin 70◦〉 = 〈300 cos 70◦, 300 sin 70◦〉

Jeeja A. V. jeejamath@gmail.com
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Therefore, the resultant F = F1 + F2 is given by

F = F1 + F2

=
〈

100
√

3 + 300 cos 70◦, 100 + 300 sin 70◦
〉

= 100
〈√

3 + 3 cos 70◦, 1 + 3 sin 70◦
〉

≈ 〈275.8, 381.9〉

The magnitude of the resultant is

‖F‖ =
√

275.82 + 381.92 ≈ 471N.

Let θ be the angle F makes with the positive x-axis when the initial point of F is at the

origin. From the x-component of F, we have

‖F‖ cos θ = 100
√

3 + 300 cos 70◦ ⇒ cos θ =
100
√

3 + 300 cos 70◦

‖F‖

Since the terminal point of F is in the first quadrant, we have

θ = cos−1

(
100
√

3 + 300 cos 70◦

‖F‖

)
≈ 54.2◦

Problem 2.2

Find the magnitude of the resultant force and the angle that it makes with the

positive x-axis.
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Solution. From the figure, we have

F1 = 400 〈cos(−30◦), sin(−30◦)〉

= 400 〈cos 30◦,− sin 30◦〉

= 400

〈√
3

2
,−1

2

〉
= 200

〈√
3,−1

〉
F2 = 400 〈cos 120◦, sin 120◦〉

= 400 〈− sin 30◦, cos 30◦〉

= 400

〈
−1

2
,

√
3

2

〉
= 200

〈
−1,
√

3
〉
.

Hence the resultant F is given by

F = F1 + F2

= 200
〈√

3,−1
〉

+ 200
〈
−1,
√

3
〉

= 200
〈√

3− 1,
√

3− 1
〉
.

The magnitude of the resultant is

‖F‖ =

√
2002(

√
3− 1)2 + 2002(

√
3− 1)2 = 2

√
2× 2002(

√
3− 1)2 = 200(

√
3−1)

√
2 ≈ 207N.

Let θ be the angle F makes with the positive x-axis when the initial point of F is at

the origin. Clearly the terminal point of F is in the first quadrant. Also the x and y

components are same for F. Hence

θ = 45◦.

2.1 DOT PRODUCT

If u = 〈u1, u2〉 and v = 〈v1, v2〉 are vectors in 2- space, then the dot product of u and v

is written as u · v and is defined as

u · v = u1v1 + u2v2.

Similarly, if u = 〈u1, u2, u3〉 and v = 〈v1, v2, v3〉 are vectors in 3-space, then their dot

product is defined as

u · v = u1v1 + u2v2 + u3v3.

I Note that dot product of two vectors is a scalar.

The following are some important properties of dot product

Jeeja A. V. jeejamath@gmail.com
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Theorem2.3

If u,v, and w are vectors in 2- or 3-space and k is a scalar, then:

(a) u · v = v · u

(b) u · (v + w) = u · v + u ·w

(c) k(u · v) = (ku) · v = u · (kv)

(d) v · v = ‖v‖2

(e) 0 · v = 0

(f) i · i = j · j = k · k = 1

(g) i · j = j · k = k · i = 0

Proof. We assume that u = 〈u1, u2, u3〉 ,v = 〈v1, v2, v3〉 and w = 〈w1, w2, w3〉, then,

(a) u · v = u1v1 + u2v2 + u3v3 = v1u1 + v2u2 + v3u3 = v · u

(b) We have

u · (v + w) = 〈u1, u2, u3〉 · (〈v1, v2, v3〉+ 〈w1, w2, w3〉)

= 〈u1, u2, u3〉 · 〈v1 + w1, v2 + w2, v3 + w3〉

= u1(v1 + w1) + u2(v2 + w2) + u3(v3 + w3)

= (u1v1 + u2v2 + u3v3) + (u1w1 + u2w2 + u3w3)

= u · v + u ·w.

(c) Now,

k(u · v) = k(u1v1 + u2v2 + u3v3)

= (ku1)v1 + (ku2)v2 + (ku3)v3

= (ku) · v

Similarly

k(u · v) = k(u1v1 + u2v2 + u3v3)

= u1(kv1) + u2(kv2) + u3(kv3)

= u · (kv).

(d) Clearly

v · v = v1v1 + v2v2 + v3v3 = v21 + v22 + v23 = ‖v‖2 .
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(e) Since i = 〈1, 0, 0〉, from (d), we have

i · i = ‖i‖2 = 12 + 02 + 02 = 1.

Similarly

j · j = k · k = 1.

(f) Since i = 〈1, 0, 0〉 , j = 〈0, 1, 0〉 and k = 〈0, 0, 1〉, we have

i · j = 1× 0 + 0× 1 + 0× 0 = 0.

Similarly

j · k = k · i = 0.

From Theorem 2.3(d), it is clear that

‖v‖ =
√
v · v. (9)

ANGLE BETWEEN VECTORS

Figure 2.9

Suppose that u and v are nonzero vectors in 2-space or 3-space that are positioned

so their initial points coincide. We define the angle between u and v to be the angle θ

determined by the vectors that satisfies the condition 0 ≤ θ ≤ π.

Theorem2.4

If u and v are nonzero vectors in 2-space or 3-space and if θ is the angle between

them, then

cos θ =
u · v
‖u‖ ‖v‖

(10)
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Proof. Suppose that the vectors u,v, and v − u are positioned to form three sides of a

triangle (see the figure below). It follows from the law of cosines that

‖v − u‖2 = ‖u‖2 + ‖u‖2 − 2 ‖u‖ ‖v‖ cos θ. (11)

Using the properties of dot product,

‖v − u‖2 = (v − u) · (v − u)

= v · (v − u)− u · (v − u)

= v · v − (v · u)− (u · v) + u · u

= ‖v‖2 − (u · v)− (u · v) + ‖u‖2

= ‖v‖2 − 2(u · v) + ‖u‖2

Substituting to (11), we get

‖u‖2 + ‖u‖2 − 2 ‖u‖ ‖v‖ cos θ = ‖v‖2 − 2(u · v) + ‖u‖2

which shows that

‖u‖ ‖v‖ cos θ = u · v.

Hence

cos θ =
u · v
‖u‖ ‖v‖

It is evident from (10) that the sign of dot product is same as the sign of cos θ which

makes us easier to determine the nature of angle from the sign of dot product. Thus we

have

Suppose u and v are nonzero vectors and let θ be the angle between them. If

I u · v > 0, then 0 ≤ θ <
π

2
(θ is acute),

I u · v < 0, then
π

2
≤ θ < π, (θ is obtuse)

I u · v = 0, then θ =
π

2
, i.e. the vectors are perpendicular or orthogonal.
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Problem 2.3

In each part, determine whether u and v make an acute angle, an obtuse angle, or

are orthogonal.

(a) u = 7i + 3j + 5k,v = −8i + 4j + 2k

(b) u = 6i + j + 3k,v = 4i− 6k

(c) u = 〈1, 1, 1〉 ,v = 〈−1, 0, 0〉

(d) u = 〈4, 1, 6〉 ,v = 〈−3, 0, 2〉

Solution. (a) We have

u · v = (7i + 3j + 5k) · (−8i + 4j + 2k) = 7× (−8) + 3× 4 + 5× 2 = −44 < 0

Hence u and v make an obtuse angle.

(b) We have

u · v = (6i + j + 3k) · (4i− 6k) = 6× 4 + 1× 0 + 3× (−6) = 6 > 0

Hence u and v make an acute angle.

(c) We have

u · v = 〈1, 1, 1〉 · 〈−1, 0, 0〉 = 1× (−1) + 1× 0 + 1× 0 = −1 < 0

Hence u and v make an obtuse angle.

(d) We have

u · v = 〈4, 1, 6〉 · 〈−3, 0, 2〉 = 4× (−3) + 1× 0 + 6× 2 = 0

Hence the vectors u and v are orthogonal.

DIRECTION ANGLES

In an xy-coordinate system, the direction of a nonzero vector v is completely determined

by the angles α and β between v and the unit vectors i and j, and in an xyz-coordinate

system the direction is completely determined by the angles α, β, and γ between v and

the unit vectors i, j, and k. These angles are called the direction angles of v and cosine

of these angles are called the direction cosines of v.
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If v = 〈v1, v2, v3〉 = v1i + v2j + v3k, then

cosα =
v · i
‖v‖ ‖i‖

=
(v1i + v2j + v3k) · i

‖v‖ × 1

=
v1
‖v‖

cos β =
v · j
‖v‖ ‖j‖

=
(v1i + v2j + v3k) · j

‖v‖ × 1

=
v2
‖v‖

cos γ =
v · k
‖v‖ ‖k‖

=
(v1i + v2j + v3k) · k

‖v‖ × 1

=
v3
‖v‖

Figure 2.10

Theorem2.5 (Direction Cosines)

The direction cosines of a nonzero vector v = v1i + v2j + v3k are

cosα =
v1
‖v‖

, cos β =
v2
‖v‖

, cos γ =
v3
‖v‖

. (12)

I Clearly direction cosines of a nonzero vector v = v1i + v2j + v3k are components of

the unit vector
v

‖v‖
.
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Problem 2.4

Show that the direction cosines of a nonzero vector v, satisfy the equation

cos2 α + cos2 β + cos2 γ = 1. (13)

Solution. Let α, β, and γ be the direction angles of v = v1i + v2j + v3k. Then

cosα =
v1
‖v‖

, cos β =
v2
‖v‖

, and cos γ =
v3
‖v‖

.

Then

cos2 α + cos2 β + cos2 γ =

(
v1
‖v‖

)2

+

(
v2
‖v‖

)2

+

(
v3
‖v‖

)2

=
v21 + v22 + v23
‖v‖2

=
‖v‖2

‖v‖2

= 1.

Problem 2.5

Find the direction cosines of the vector v = 2i − 4j + 4k, and approximate the

direction angles to the nearest degree.

Solution. From the vector, v1 = 2, v2 = −4, v3 = 4. We have ‖v‖ =
√

22 + (−4)2 + 42 =
√

4 + 16 + 16 =
√

36 = 6. The directin cosines are given by

cosα =
v1
‖v‖

=
2

6
=

1

3

cos β =
v2
‖v‖

=
−4

6
= −2

3

cos γ =
v3
‖v‖

=
4

6
=

2

3
.

Then

α = cos−1
(

1

3

)
≈ 71◦

β = cos−1
(
−2

3

)
≈ 132◦

γ = cos−1
(

2

3

)
≈ 48◦.
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Problem 2.6

Find the direction cosines of v and confirm that they satisfy Equation (12). Then

use the direction cosines to approximate the direction angles to the nearest degree.

(a) v = i + j− k

(b) v = 2i− 2j + k

(c) v = 3i− 2j− 6k

(d) v = 3i− 4k

Solution. (a) We have

‖v‖ =
√

12 + 12 + (−2)2 =
√

3

The direction cosines are given by

cosα =
1√
3
, cos β =

1√
3
, cos γ = − 1√

3
.

Then

cos2 α + cos2 β + cos2 γ =

(
1√
3

)2

+

(
1√
3

)2

+

(
− 1√

3

)2

=
1

3
+

1

3
+

1

3
= 1.

Also

α = cos−1
(

1√
3

)
≈ 54.74◦

β = cos−1
(

1√
3

)
≈ 54.74◦

γ = cos−1
(
− 1√

3

)
≈ 125.26◦.

(b) We have

‖v‖ =
√

22 + (−2)2 + 12 =
√

9 = 3.

The direction cosines are given by

cosα =
2

3
, cos β = −2

3
, cos γ =

1

3
.

Then

cos2 α + cos2 β + cos2 γ =

(
2

3

)2

+

(
−2

3

)2

+

(
1

3

)2

=
4

9
+

4

9
+

1

9
= 1.

Also

α = cos−1
(

2

3

)
≈ 48.19◦

β = cos−1
(
−2

3

)
≈ 131.81◦

γ = cos−1
(

1

3

)
≈ 70.53◦.
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(c) We have

‖v‖ =
√

32 + (−2)2 + (−6)2 =
√

49 = 7.

The direction cosines are given by

cosα =
3

7
, cos β = −2

7
, cos γ = −6

7
.

Then

cos2 α + cos2 β + cos2 γ =

(
3

7

)2

+

(
−2

7

)2

+

(
−6

7

)2

=
9

49
+

4

49
+

36

49
= 1.

Also

α = cos−1
(

3

7

)
≈ 64.62◦

β = cos−1
(
−2

7

)
≈ 106.6◦

γ = cos−1
(
−6

7

)
≈ 149◦.

(d) We have

‖v‖ =
√

32 + 02 + (−4)2 =
√

25 = 5.

The direction cosines are given by

cosα =
3

5
, cos β =

0

5
= 0, cos γ = −4

5
.

Then

cos2 α + cos2 β + cos2 γ =

(
3

5

)2

+ 02 +

(
−4

5

)2

=
9

25
+ 0 +

16

25
= 1.

Also

α = cos−1
(

3

5

)
≈ 53.13◦

β = cos−1 0 = 90◦

γ = cos−1
(
−4

5

)
≈ 143.13◦.

Problem 2.7

Find the angle between a diagonal of a cube and one of its edges.

Solution. Assume that the cube has side a, and introduce a coordinate system with one

vertex as the origin and the sides intersecting at that vertex as x, y and z axes, as shown

in Figure 2.11.
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Figure 2.11

In this coordinate system the vector

d = ai + aj + ak

is a diagonal of the cube and the unit vectors i, j, and k run along the edges. By symmetry,

the diagonal makes the same angle with each edge, so it is sufficient to find the angle

between d and i (the direction angle α). Thus,

cosα =
d · i
‖d‖ ‖i‖

=
(ai + aj + ak) · i√
a2 + a2 + a2 × 1

=
a√
3a2

=
a√
3a

=
1√
3

and hence

α = cos−1
(

1√
3

)
≈ 54.7◦.

DECOMPOSING VECTORS INTO ORTHOGONAL COM-

PONENTS

We know that any vector v = 〈v1, v2〉 can be represented as

v = v1i + v2j,

here i and j are orthogonal unit vectors along x and y axes. If we let w1 = v1i and

w2 = v2j, then w1 and w2 are orthogonal vectors and

v = w1 + w2.
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Hence any vector in 2-space is a sum of two orthogonal vectors along x and y axes.

We now show that if we are given two orthogonal unit vector e1 and e2 in 2-space,

then any vector v in 2-space can be expressed as a sum

v = w1 + w2

where w1 is along e1 and w2 is along e2 so that w1 and w2 are orthogonal vectors. Then

w1 = k1e1 and w2 = k2e2

for scalars k1 and k2. This shows that

v = k1e1 + k2e2.

Taking dot product with e1 and e2, we get

v · e1 = (k1e1 + k2e2) · e1
= k1(e1 · e1) + k2(e2 · e1)

= k1 ‖e1‖2 + k2(0)

since e1 and e2 are orthogonal vectors, e2 · e1 = 0 and since e1 is a unit vector, ‖e1‖ = 1.

⇒ v · e1 = k1 × 1 = k1.

Similarly

v · e2 = (k1e1 + k2e2) · e2
= k1(e1 · e2) + k2(e2 · e2)

= k1(0) + k2 ‖e2‖2

since e1 and e2 are orthogonal vectors, e1 · e2 = 0 and since e2 is a unit vector, ‖e2‖ = 1.

⇒ v · e2 = k2 × 1 = k2.

Thus

v = (v · e1)e1 + (v · e2)e2 (14)

is the orthogonal decomposition of v along e1 and e2. The vectors

(v · e1)e1 and (v · e2)e2

are called the vector components v along e1 and e2 respectively and

v · e1 and v · e2
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are called the scalar components v along e1 and e2 respectively.

Problem 2.8

Given that,

v = 〈2, 3〉 , e1 =

〈
1√
2
,

1√
2

〉
, and e2 =

〈
− 1√

2
,

1√
2

〉
.

(a) Show that e1 and e2 are orthogonal unit vectors.

(b) Find the scalar components of v along e1 and e2.

(c) Find the vector components of v along e1 and e2.

(d) Verify equation (14).

Solution. (a) We have

e1 · e2 =

〈
1√
2
,

1√
2

〉
·
〈
− 1√

2
,

1√
2

〉
=

(
1√
2

)
×
(
− 1√

2

)
+

(
1√
2

)
×
(

1√
2

)
= −1

2
+

1

2

= 0.

Thus e1 and e2 are orthogonal vectors. Since

‖e1‖ =

√(
1√
2

)2

+

(
1√
2

)2

=

√
1

2
+

1

2

= 1

‖e2‖ =

√(
− 1√

2

)2

+

(
1√
2

)2

=

√
1

2
+

1

2

= 1

e1 and e2 are unit vectors too.

(b) Scalar components of v along e1 and e2 are

v · e1 = 2

(
1√
2

)
+ 3

(
1√
2

)
=

2 + 3√
2

=
5√
2

v · e2 = 2

(
− 1√

2

)
+ 3

(
1√
2

)
=
−2 + 3√

2
=

1√
2
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(c) Vector components of v along e1 and e2 are

(v · e1) e1 =
5√
2

〈
1√
2
,

1√
2

〉
=

〈
5

2
,
5

2

〉
(v · e1) e2 =

1√
2

〈
− 1√

2
,

1√
2

〉
=

〈
−1

2
,
1

2

〉
(d) Clearly

(v · e1) e1 + (v · e1) e2 =

〈
5

2
,
5

2

〉
+

〈
−1

2
,
1

2

〉
=

〈
5− 1

2
,
5 + 1

2

〉
= 〈2, 3〉

= v.

2.2 ORTHOGONAL PROJECTIONS

The vector components of v along e1 and e2 in (14) are also called the orthogonal

projections of v on e1 and e2 and are commonly denoted by

proje1v = (v · e1)e1 and proje2v = (v · e2)e2

In general if e is a unit vector, then the orthogonal projection of v on e is defined

as

projev = (v · e)e (15)

If b is a nonzero vector, then since
b

‖b‖
is a unit vector in the direction of b, the orthog-

onal projection of v on b is given by

projbv =

(
v · b

‖b‖

)(
b

‖b‖

)
=

(
v · b
‖b‖

)(
b

‖b‖

)
=

(
v · b
‖b‖2

)
b

Thus we have

projbv =
v · b
‖b‖2

b (16)

I Geometrically, if b and v have a common initial point, then projbv is the vector that

is determined when a perpendicular is dropped from the terminal point of v to the line

through b.
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I From Figure 2.12 it is clear that projbv is a vector parallel to b.

Figure 2.12

Moreover, it is evident from Figure 2.12 that if we subtract projbv from v, then the

resulting vector

v − projbv

will be orthogonal to b; we call this the vector component of v orthogonal to b. As

a summary we have

Suppose a nonzero vector b is given. Then for any vector v,

I The orthogonal projection of v on b is

projbv =
v · b
‖b‖2

b

I The vector component of v orthogonal to b is given by

v − projbv

I If w1 = projbv and w2 = v− projbv then w1 and w2 are orthogonal vectors

and

v = w1 + w2.

Moreover, w1 is parallel to b and w2 is perpendicular to b.

Problem 2.9

Find the orthogonal projection of v = i + j + k on b = 2i + 2j, and then find the

vector component of v orthogonal to b.

Solution. We have
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v · b(i + j + k) · (2i + 2j)

= 1× 2 + 1× 2 + 1× 0

= 2 + 2 + 0

= 4

‖b‖2 = 22 + 22

= 8.

Thus, the orthogonal projection of v on b is

projbv =
v · b
‖b‖2

b

=
4

8
(2i + 2j)

=
1

2
(2i + 2j)

= i + j

and the vector component of v orthogonal to b is

v − projbv = (i + j + k)− (i + j) = k.

Problem 2.10

In each part, find the vector component of v along b and the vector component of

v orthogonal to b. Then sketch the vectors v, projbv, and v − projbv.

(a) v = 2i− j, b = 3i + 4j

(b) v = 〈4, 5〉 , b = 〈1,−2〉

(c) v = −3i− 2j, b = 2i + j

Solution. In each part we find projbv and v − projbv.

(a) We have

v · b = (2i− j) · (3i + 4j)

= 2× 3 + (−1)× 4

= 6− 4

= 2

‖b‖2 = 32 + 42

= 25.
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Thus, vector component of of v along b is

projbv =
v · b
‖b‖2

b

=
2

25
(3i + 4j)

=
6

25
i +

8

25
j

and the vector component of v orthogonal to b is

v − projbv = (2i− j)−
(

6

25
i +

8

25
j

)
=

(
2− 6

25

)
i +

(
−1− 8

25

)
j

=
44

25
i− 33

25
j.

Figure 2.13

(b) We have

v · b = 〈4, 5〉 · 〈1,−2〉

= 4× 1 + 5× (−2)

= 4− 10

= −6

‖b‖2 = 12 + (−2)2

= 5.
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Thus, vector component of of v along b is

projbv =
v · b
‖b‖2

b

= −6

5
〈1,−2〉

=

〈
−6

5
,
12

5

〉
and the vector component of v orthogonal to b is

v − projbv = 〈4, 5〉 −
〈
−6

5
,
12

5

〉
=

〈
4 +

6

5
, 5− 12

5

〉
=

〈
26

5
,
13

5

〉
.

Figure 2.14

(c) We have

v · b = (−3i− 2j) · (2i + j)

= (−3)× 2 + (−2)× 1

= −6− 2

= −8

‖b‖2 = 22 + 12

= 5.
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Thus, vector component of of v along b is

projbv =
v · b
‖b‖2

b

=
−8

5
(2i + j)

= −16

5
i− 8

5
j

and the vector component of v orthogonal to b is

v − projbv = (−3i− 2j)−
(
−16

5
i− 8

5
j

)
=

(
−3 +

16

5

)
i +

(
−2 +

8

5

)
j

=
1

5
i− 2

5
j

=
1

5
(i− 2j).

Figure 2.15

Problem 2.11

In each part, find the vector component of v along b and the vector component of

v orthogonal to b.

(a) v = 2i− j + 3k, b = i + 2j + 2k

(b) v = 〈4,−1, 7〉 , b = 〈2, 3,−6〉
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Solution. (a) We have

v · b = (2i− j + 3k) · (i + 2j + 2k)

= 2× 1 + (−1)× 2 + 3× 2

= 2− 2 + 6

= 6

‖b‖2 = 12 + 22 + 22

= 9.

Thus, vector component of of v along b is

projbv =
v · b
‖b‖2

b

=
6

9
(i + 2j + 2k)

=
2

3
i +

4

3
j +

4

3
k

and the vector component of v orthogonal to b is

v − projbv = (2i− j + 3k)−
(

2

3
i +

4

3
j +

4

3
k

)
=

(
2− 2

3

)
i +

(
−1− 4

3

)
j +

(
3− 4

3

)
k

=
4

3
i− 7

3
j +

5

3
k.

(b) We have

v · b = 〈4,−1, 7〉 · 〈2, 3,−6〉

= 4× 2 + (−1)× 3 + 7× (−6)

= 8− 3− 42

= −37

‖b‖2 = 22 + 32 + (−6)2

= 49.

Thus, vector component of of v along b is

projbv =
v · b
‖b‖2

b

= −37

49
〈2, 3,−6〉

=
37

49
〈−2,−3, 6〉

Jeeja A. V. jeejamath@gmail.com



42

and the vector component of v orthogonal to b is

v − projbv = 〈4,−1, 7〉 − 37

49
〈−2,−3, 6〉

=

〈
4 +

74

49
,−1 +

111

49
, 7− 222

49

〉
=

1

49
〈270, 62, 121〉 .

Problem 2.12

Express the vector v as the sum of a vector parallel to b and a vector orthogonal

to b.

(a) v = 2i− 4j, b = i + j

(b) v = 3i + j− 2k, b = 2i− k

(c) v = 4i− 2j + 6k, b = −2i + j− 3k

(d) v = 〈−3, 5〉 , b = 〈1, 1〉

(e) v = 〈−2, 1, 6〉 , b = 〈0,−2, 1〉

(f) v = 〈1, 3, 1〉 , b = 〈3,−2, 5〉

Solution. In each case we find w1 = projbv and w2 = v − projbv. Then w1 is parallel

to b, w2 is orthogonal to b and

v = w1 + w2.

(a) We have

v · b = (2i− 4j) · (i + j)

= 2× 1 + (−4)× 1

= 2− 4

= −2

‖b‖2 = 12 + 12

= 2.

Thus, vector component of of v along b is

projbv =
v · b
‖b‖2

b

= −2

2
(i + j)

= −i− j
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and the vector component of v orthogonal to b is

v − projbv = (2i− 4j)− (−i− j)

= 3i− 3j.

Thus

w1 = −i− j and w2 = 3i− 3j.

It is clear that

v = 2i− 4j = (−i− j) + (3i− 3j) = w1 + w2.

(b) We have

v · b = (3i + j− 2k) · (2i− k)

= 3× 2 + 1× 0 + (−2)× (−1)

= 6 + 0 + 2

= 8

‖b‖2 = 22 + 02 + (−1)2

= 5.

Thus, vector component of of v along b is

projbv =
v · b
‖b‖2

b

=
8

5
(2i− k)

=
16

5
i− 8

5
k

and the vector component of v orthogonal to b is

v − projbv = (3i + j− 2k)−
(

16

5
i− 8

5
k

)
=

(
3− 16

5

)
i + (1− 0)j +

(
−2 +

8

5

)
k

= −1

5
i + j− 2

5
k

Thus

w1 =
16

5
i− 8

5
k and w2 = −1

5
i + j− 2

5
k.

It is clear that

v = 3i + j− 2k =

(
16

5
i− 8

5
k

)
+

(
−1

5
i + j− 2

5
k

)
= w1 + w2.

The problems (c) to (e) are left as exercise.

Jeeja A. V. jeejamath@gmail.com



44

(f) We have

v · b = 〈1, 3, 1〉 · 〈3,−2, 5〉

= 1× 3 + 3× (−2) + 1× 5

= 3− 6 + 5

= 2

‖b‖2 = 32 + (−2)2 + 52

= 38.

Thus, vector component of of v along b is

projbv =
v · b
‖b‖2

b

=
2

38
〈3,−2, 5〉

=
1

19
〈3,−2, 5〉

=

〈
3

19
,
−2

19
,

5

19

〉
and the vector component of v orthogonal to b is

v − projbv = 〈1, 3, 1〉 −
〈

3

19
,
−2

19
,

5

19

〉
=

〈
1− 3

19
, 3 +

2

19
, 1− 5

19

〉
=

〈
16

19
,
59

19
,
14

19

〉
.

Thus

w1 =

〈
3

19
,
−2

19
,

5

19

〉
and w2 =

〈
16

19
,
59

19
,
14

19

〉
.

It is clear that

v = 〈1, 3, 1〉 =

〈
3

19
,
−2

19
,

5

19

〉
+

〈
16

19
,
59

19
,
14

19

〉
= w1 + w2.
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Problem 2.13

If L is a line in 2-space or 3-space that passes through the points A and B, then

the distance from a point P to the line L is equal to the length of the component

of the vector
−→
AP that is orthogonal to the vector

−→
AB.

Solution. From the figure,

−→
AQ = proj−→

AB

−→
AP = proj−→

AB

−→
AP =

−→
AP ·−→AB∥∥∥−→AB∥∥∥2

−→
AB

and
−→
PQ =

−→
AP −

−→
AQ

That is
−→
AQ is component of the vector

−→
AP that is orthogonal to the vector

−→
AB. Moreover

it is clear that distance of P to L is,

d = ‖PQ‖ .

Hence

d =

∥∥∥∥∥∥∥
−→
AP −

−→
AP ·−→AB∥∥∥−→AB∥∥∥2

−→
AB

∥∥∥∥∥∥∥ . (17)

Problem 2.14

A rope is attached to a 100 lb block on a ramp that is inclined at an angle of 30◦

with the ground. How much force does the block exert against the ramp, and how

much force must be applied to the rope in a direction parallel to the ramp to prevent

the block from sliding down the ramp? (Assume that the ramp is smooth, that is,

exerts no frictional forces.)
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Solution. Let F denote the downward force of gravity on the block (so ‖F‖ = 100 lb),

and let F1 and F2 be the vector components of F parallel and perpendicular to the ramp.

The lengths of F1 and F2 are

‖F1‖ = ‖F‖ cos 60◦

= 100

(
1

2

)
= 50 lb

‖F1‖ = ‖F‖ sin 60◦

= 100

(√
3

2

)
≈ 86.6 lb.

Thus, the block exerts a force of approximately 86.6 lb against the ramp, and it requires

a force of 50 lb to prevent the block from sliding down the ramp.

WORK

If a force vector F of constant magnitude is applied on an object moving along a line from

the point P to a point Q where
−→
PQ makes an angle θ with F, then work W done by the

force on the object is given by

W = ‖F‖
∥∥∥−→PQ∥∥∥ cos θ = F ·−→PQ (18)

If the force vector is applied in the direction of
−→
PQ, then θ = 0 so that work done,

W = ‖F‖
∥∥∥−→PQ∥∥∥

Problem 2.15

(a) A wagon is pulled horizontally by exerting a constant force of 10 lb on the

handle at an angle of 60◦ with the horizontal. How much work is done in

moving the wagon 50 ft?

(b) Aforce of F = 3i − j + 2k lb is applied to a point that moves on a line from

P (−1, 1, 2) to Q(3, 0,−2). If distance is measured in feet, how much work is

done?
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Solution. (a) Here ‖F‖ = 10 lb, θ = 60◦ and
∥∥∥−→PQ∥∥∥ = 50 ft. Then the work done is

W = ‖F‖
∥∥∥−→PQ∥∥∥ cos θ

= 10× 50× cos 60◦

= 500× 1

2

= 250 ft lb.

(b) We have

−→
PQ = (3− (−1))i + (0− 1)j + (−2− 2)k = 4i− j− 4k.

Hence the work done is

W = F ·−→PQ

= (3i− j + 2k) · (4i− j− 4k))

= 3× 4 + (−1)× (−1) + 2× (−4)

= 12 + 1− 8

= 5 ft lb.

Problem 2.16

As shown in the accompanying figure, a child with mass 34 kg is seated on a smooth

(frictionless) playground slide that is inclined at an angle of 27◦ with the horizontal.

(a) Estimate the force that the child exerts on the slide, and estimate how much

force must be applied in the direction of P to prevent the child from sliding

down the slide.

(b) Estimate how much force must be applied in the direction of Q to prevent the

child from sliding down the slide?

Take the acceleration due to gravity to be 9.8m/s2.

Solution. Let F denote the downward force of gravity on the child. Then

‖F‖ = 34× 9.8 = 333.2N.
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(a) Suppose F1 and F2 be the vector components of

F parallel and perpendicular to the slide. Then

F = F1 + F2.

From the figure

‖F1‖ = ‖F‖ cos 63◦ ≈ 333.2× 0.454 = 151.27N

‖F2‖ = ‖F‖ sin 63◦ ≈ 333.2× 0.891 = 296.88N
Hence amount of force to be applied in the direction of P to prevent the child from sliding

down the slide is 151.27N .

(b) We proceed as follows. Choose O as the origin,

direction of Q as positive x-direction and introduce

a rectangular coordinate system. Let e1 and e2 be

unit vectors parallel and perpendicular to the slide.

Then e1 makes an angle (180 + 27)◦ and e2 makes an

angle (270 + 27)◦ with the positive x-axis.

Thus

e1 = 〈cos(180 + 27)◦, sin(180 + 27)◦〉 = 〈− cos 27◦,− sin 27◦〉

and

e2 = 〈cos(270 + 27)◦, sin(270 + 27)◦〉 = 〈sin 27◦,− cos 27◦〉 .

Let F′ be the force to be applied in the direction of Q to prevent the child from sliding

down the slide and suppose ‖F′‖ = a. Then the forces applied on the child are, 333.2N

force due to gravity, towards negative y- direction and F′ of magnitude a towards positive

x-direction. So net force applied is

F′′ = ai− 333.2j = 〈a,−333.2〉 .

The net effective force exerted in the direction parallel to the slide is same as the compo-

nent of F′′ in the direction of e1 which has magnitude

F′′ · e1 = 〈a,−333.2〉 · 〈− cos 27◦,− sin 27◦〉 = −a cos 27◦ + 333.2 sin 27◦.

In order to prevent the child from sliding down the child, F′′ ·e1 must be non-positive. (if

it is positive, since the direction of this force is downward along the slide, the child will

slide down.) That is

−a cos 27◦ + 333.2 sin 27◦ ≤ 0

⇒ a cos 27◦ ≥ 333.2 sin 27◦

⇒ a ≥ 333.2 tan 27◦

≈ 333.2× 0.5095

= 169.77N.
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Hence minimum amount of force to be applied in the direction of Q to prevent the child

from sliding down the slide is 169.77N .

Problem 2.17

Suppose that the slide in Problem 2.16 is 4m long. Estimate the work done by

gravity if the child slides from the top of the slide to the bottom.

Solution. Here the force is applied in the direction of F1 and since the length of slide is

4m, the work done by gravity if the child slides from the top of the slide to the bottom

is given by

W = ‖F1‖ × 4 = 151.27× 4 = 605.08Nm = 605.08 J.

Problem 2.18

A boat travels 100 meters due north while the wind exerts a force of 500 newtons

toward the northeast. How much work does the wind do?

Solution. Here

‖F‖ = 500,
∥∥∥−→PQ∥∥∥ = 100.

Also angle between the direction of motion of boat and the wind is 45◦. (since the angle

between north and northeast is 45◦.). Hence work done is

W = ‖F‖
∥∥∥−→PQ∥∥∥ cos θ

= 500× 100× cos 45◦

= 50000× 1√
2

= 50000×
√

2

2

= 25000
√

2

≈ 35355.34J.

Problem 2.19

Prove that

‖u + v‖2 + ‖u− v‖2 = 2 ‖u‖2 + 2 ‖v‖2 (19)

and interpret the result geometrically by translating it into a theorem about paral-

lelograms.

Solution. From (9)

‖v‖ =
√
v · v ⇒ ‖v‖2 = v · v.
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Using this we have

‖u + v‖2 = (u + v) · (u + v)

= u · u + u · v + v · u + v · v

= ‖u‖2 + u · v + u · v + ‖v‖2

= ‖u‖2 + 2(u · v) + ‖v‖2

and

‖u− v‖2 = (u− v) · (u− v)

= u · u− u · v − v · u− v · (−v)

= ‖u‖2 − u · v − u · v + v · v

= ‖u‖2 − 2(u · v) + ‖v‖2

Hence

‖u + v‖2 + ‖u− v‖2 =
(
‖u‖2 + 2u · v + ‖v‖2

)
+
(
‖u‖2 − 2(u · v) + ‖v‖2

)
= 2 ‖u‖2 + 2 ‖v‖2 .

Consider u and v as vectors with same initial point. Then the vectors u+v and v−u

form the diagonals of a parallelogram ABCD whose adjacent sides are along u and v (see

the following figure). Then it is clear that

CD = AB = ‖u‖ BC = AD = ‖v‖

AC = ‖u + v‖ BD = ‖v − u‖ = ‖u− v‖

Figure 2.16
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For the parallelogram ABCD, we know that

AC2 +BD2 = AB2 +BC2 + CD2 + AD2

= 2AB2 + 2AD2

⇒ ‖u + v‖2 + ‖u− v‖2 = 2 ‖u‖2 + 2 ‖v‖2 .

Usually the relation between the norms of vectors u,v,u + v and u− v as proved above

is called the parallelogram law.

Problem 2.20

Prove that

u · v =
1

4
‖u + v‖2 − 1

4
‖u− v‖2 .

Solution. From the solution of Problem 2.19, we have

‖u + v‖2 = ‖u‖2 + 2(u · v) + ‖v‖2

and

‖u− v‖2 = ‖u‖2 − 2(u · v) + ‖v‖2

Subtracting we get

‖u + v‖2 − ‖u− v‖2 = 2(u · v)− (−2(u · v))

= 4(u · v)

which gives the required relation.

2.3 CROSS PRODUCT

If u = 〈u1, u2, u3〉 and v = 〈v1, v2, v3〉 are vectors in 3-space, then the cross product

u× v is the vector defined by

u× v = (u2v3 − u3v2)i− (u1v3 − u3v1)j + (u1v2 − u2v1)k (20)

or, equivalently

u× v =

∣∣∣∣∣∣∣∣
i j k

u1 u2 u3

v1 v2 v3

∣∣∣∣∣∣∣∣ (21)
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I The cross product of two vectors is a vector.

The following are some properties of cross product.

Theorem2.6

If u,v, and w are vectors in 3-space and k is a scalar, then:

(a) u× v = −(v × u)

(b) u× (v + w) = (u× v) + (u×w)

(c) (u + v)×w = (u×w) + (v ×w)

(d) k(u× v) = (ku)× v = u× (kv)

(e) u× 0 = 0× u = 0

(f) u× u = 0

(g) i× j = k, j× k = i, k× i = j

(h) j× i = −k, i× j = −i, i× k = −j

(i) i× i = j× j = k× k = 0

Proof. Suppose, u = 〈u1, u2, u3〉 ,v = 〈v1, v2, v3〉 and w = 〈w1, w2, w3〉. Then,

(a) Using the properties of determinants, we have

u× v =

∣∣∣∣∣∣∣∣
i j k

u1 u2 u3

v1 v2 v3

∣∣∣∣∣∣∣∣
= −

∣∣∣∣∣∣∣∣
i j k

v1 v2 v3

u1 u2 u3

∣∣∣∣∣∣∣∣
= −(v × u).

(b) Using the properties of determinants, we have

u× (v + w) =

∣∣∣∣∣∣∣∣
i j k

u1 u2 u3

v1 + w1 v2 + w2 v3 + w3

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
i j k

u1 u2 u3

v1 v2 v3

∣∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣∣
i j k

u1 u2 u3

w1 w2 w3

∣∣∣∣∣∣∣∣
= (u× v) + (u×w)
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(c) Proof similar to (b), left as an exercise.

(d) If k is a scalar then using property of determinants, we have

k(u× v) = k

∣∣∣∣∣∣∣∣
i j k

u1 u2 u3

v1 v2 v3

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
i j k

ku1 ku2 ku3

v1 v2 v3

∣∣∣∣∣∣∣∣
= (ku)× v

Similarly,

k(u× v) = k

∣∣∣∣∣∣∣∣
i j k

u1 u2 u3

v1 v2 v3

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
i j k

u1 u2 u3

kv1 kv2 kv3

∣∣∣∣∣∣∣∣
= u× (kv)

(e) Since 0 = 〈0, 0, 0〉, we have

u× 0 =

∣∣∣∣∣∣∣∣
i j k

u1 u2 u3

0 0 0

∣∣∣∣∣∣∣∣
= 0

(f) Again using property of determinants, we have

u× u =

∣∣∣∣∣∣∣∣
i j k

u1 u2 u3

u1 u2 u3

∣∣∣∣∣∣∣∣
= 0.

(g) We have

i = 〈1, 0, 0〉 , j = 〈0, 1, 0〉 , k = 〈0, 0, 1〉
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so that

i× j =

∣∣∣∣∣∣∣∣
i j k

1 0 0

0 1 0

∣∣∣∣∣∣∣∣
= −1(0× j− 1× k) (expanding along second row)

= k.

Others left as exercise.

(h) Proof left as exercise.

(i) Use (f).

I In this diagram, the cross product of two consecutive

vectors in the counterclockwise direction is the next vector

around, and the cross product of two consecutive vectors

in the clockwise direction is the negative of the next vector

around.

GEOMETRIC PROPERTIES OF THE CROSS PRODUCT

The following theorem shows that the cross product of two vectors is orthogonal to both

factors.

Theorem2.7

If u and v are vectors in 3-space, then:

(a) u · (u× v) = 0 (u× v is orthogonal to u)

(b) v · (u× v) = 0 (u× v is orthogonal to v)

Proof. We assume that u = 〈u1, u2, u3〉 and v = 〈v1, v2, v3〉. Then by (20), we have

u× v = 〈u2v3 − u3v2,−(u1v3 − u3v1), u1v2 − u2v1〉 .

From this, we have

u · (u× v) = 〈u1, u2, u3〉 · 〈u2v3 − u3v2,−(u1v3 − u3v1), u1v2 − u2v1〉

= u1(u2v3 − u3v2)− u2(u1v3 − u3v1) + u3(u1v2 − u2v1)

= u1u2v3 − u1u3v2 − u2u1v3 + u2u3v1 + u3u1v2 − u3u2v1
= 0.
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Similarly we have v · (u× v) = 0. Hence u× v is a vector which is orthogonal to both u

and v.

I It can be seen that if u and v are nonzero and nonpar-

allel vectors, then the direction of u× v relative to u and

v is determined by a right-hand rule; that is, if the fingers

of the right hand are cupped so they curl from u toward v

in the direction of rotation that takes u into v in less than

180◦, then the thumb will point (roughly) in the direction

of u× v.

The next theorem lists some more important geometric properties of the cross product.

Theorem2.8

If u and v are vectors in 3-space, and let θ be the angle between these vectors when

they are positioned so their initial points coincide.

(a) ‖u× v‖ = ‖u‖ ‖v‖ sin θ

(b) The area A of the parallelogram that has u and v as adjacent sides is

A = ‖u× v‖ (22)

(c) u × v = 0 if and only if u and v are parallel vectors, that is, if and only if

they are scalar multiples of one another.

Proof. (a) We have from (10),

cos θ =
u · v
‖u‖ ‖v‖

.

Then,

‖u‖ ‖v‖ sin θ = ‖u‖ ‖v‖
√

cos2 θ

= ‖u‖ ‖v‖

√
1− (u · v)2

‖u‖2 ‖v‖2

= ‖u‖ ‖v‖

√
‖u‖2 ‖v‖2 − (u · v)2

‖u‖ ‖v‖

=

√
‖u‖2 ‖v‖2 − (u · v)2

=
√

(u21 + u22 + u23)(v
2
1 + v22 + v23)− (u1v1 + u2v2 + u3v3)2 (*1)

We have
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(u21 + u22 + u23)(v
2
1 + v22 + v23)− (u1v1 + u2v2 + u3v3)

2 =

u21v
2
1+u

2
1v

2
2+u

2
1v

2
3+u

2
2v

2
1+u

2
2v

2
2+u

2
2v

2
3+u

2
3v

2
1+u

2
3v

2
2+u

2
3v

2
3−(u21v

2
1+u

2
2v

2
2+u

2
3v

2
3+

2u1v1u2v2 +2u1v1u3v3 +2u2v2u3v3) = (u1v2)
2 +(u1v3)

2 +(u2v1)
2 +(u2v3)

2 +

(u3v1)
2+(u3v2)

2−2u1v1u2v2−2u1v1u3v3−2u2v2u3v3 = (u1v2)
2−2u1v2u2v1+

(u2v1)
2 + (u1v3)

2 − 2u1v3u3v1 + (u3v1)
2 + (u2v3)

2 − 2u2v3u3v2 + (u3v2)
2 =

(u1v2 − u2v1)2 + (u1v3 − u3v1)2 + (u2v3 − u3v2)2 = ‖u× v‖2

Substituting in (*1), we get

‖u‖ ‖v‖ sin θ = ‖u× v‖ .

(b) From the figure the parallelogram that has u and v

as adjacent sides can be viewed as having base ‖u‖ and

altitude ‖v‖ sin θ. Thus, its area A is

A = (base)(altitude) = ‖u‖ ‖v‖ sin θ = ‖u× v‖ .

(c) Since u and v are assumed to be nonzero vectors, it follows from part (a) that u×v = 0

if and only if sin θ = 0; this is true if and only if θ = 0 or θ = π (since 0 ≤ θ ≤ π).

Geometrically, this means that u× v = 0 if and only if u and v are parallel vectors.

Problem 2.21

Find the area of the triangle that is determined by the points P1(2, 2, 0), P2(−1, 0, 2),

and P3(0, 4, 3).

Solution. The area A of the triangle is half the area of the parallelogram determined by

the vectors
−−→
P1P2 and

−−→
P1P3. But

−−→
P1P2 = 〈−3,−2, 2〉 and

−−→
P1P3 = 〈−2, 2, 3〉 ,

so

−−→
P1P2 ×

−−→
P1P3 =

∣∣∣∣∣∣∣∣
i j k

−3 −2 2

−2 2 3

∣∣∣∣∣∣∣∣
= (−2× 3− 2× 2)i− (−3× 3− 2× (−2))j + (3× 2− (−2)× (−2))k

= (−6− 4)i− (−9 + 4)j + (−6− 4)k

= −10i + 5j− 10k
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and hence ∥∥∥−−→P1P2 ×
−−→
P1P3

∥∥∥ =
√

(−10)2 + 52 + (−10)2 =
√

225 = 15.

Hence area of the triangle,

A =
1

2

∥∥∥−−→P1P2 ×
−−→
P1P3

∥∥∥ =
15

2
.

SCALAR TRIPLE PRODUCTS

If u = 〈u1, u2, u3〉 ,v = 〈v1, v2, v3〉, and w = 〈w1, w2, w3〉 are vectors in 3-space, then the

number

u · (v ×w)

is called the scalar triple product of u,v, and w. It can be seen that

u · (v ×w) =

∣∣∣∣∣∣∣∣
u1 u2 u3

v1 v2 v3

w1 w2 w3

∣∣∣∣∣∣∣∣ (23)

Proof. By (20) and (21)

v ×w = (v2w3 − v3w2)i− (v1w3 − v3w1)j + (v1w2 − v2w1)k

=

∣∣∣∣∣∣∣∣
i j k

u1 u2 u3

v1 v2 v3

∣∣∣∣∣∣∣∣ .
Hence

u · (v ×w) = (u1i + u2j + u3k) · ((v2w3 − v3w2)i− (v1w3 − v3w1)j + (v1w2 − v2w1)k)

= (v2w3 − v3w2)u1 − (v1w3 − v3w1)u2 + (v1w2 − v2w1)u3

=

∣∣∣∣∣∣∣∣
u1 u2 u3

v1 v2 v3

w1 w2 w3

∣∣∣∣∣∣∣∣ .
Problem 2.22

Find u · (v ×w).

(a) u = 2i− 3j + k,v = 4i + j− 3k,w = j + 5k

(b) u = 〈1,−2, 2〉 ,v = 〈0, 3, 2〉 ,w = 〈−4, 1,−3〉

(c) u = 〈2, 1, 0〉 ,v = 〈1,−3, 1〉 ,w = 〈4, 0, 1〉

(d) u = i,v = i + j,w = i + j + k
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Solution. (a) We have

u · (v ×w) =

∣∣∣∣∣∣∣∣
2 −3 1

4 1 −3

0 1 5

∣∣∣∣∣∣∣∣
= 2(1× 5− 1× (−3))− (−3)(4× 5− 0× (−3)) + 1(4× 1− 0× 1)

= 2(5 + 3) + 3(20− 0) + (4− 0)

= 80.

(b) We have

u · (v ×w) =

∣∣∣∣∣∣∣∣
1 −2 2

0 3 2

−4 1 −3

∣∣∣∣∣∣∣∣
= 1(3× (−3)− 1× 2)− (−2)(0× (−3)− 2× (−4)) + 2(0× 1− 3× (−4))

= (−9− 2) + 2(0 + 8) + 2(0 + 12)

= 29.

(c), (d) are left as exercise.

GEOMETRIC PROPERTIES OF THE SCALAR TRIPLE

PRODUCT

Theorem2.9

Let u,v, and w be nonzero vectors in 3-space.

(a) The volume V of the parallelepiped that has u,v, and w as adjacent edges is

V = |u · (v ×w)| (24)

(b) u · (v ×w) = 0 if and only if u,v, and w lie in the same plane.

Proof. (a) Base of the parallelepiped is the parallelogram with adjacent sides v and w.

So base area is

base area = ‖v ×w‖ .
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Figure 2.17

The height h of the parallelepiped is the length of the orthogonal projection of u on

the vector v×w (since v×w is orthogonal to both v and w, it is along the height of the

parallelepiped). Thus

h =
∥∥projv×wu

∥∥
=
|u · (v ×w)|
‖v ×w‖2

‖v ×w‖

=
|u · (v ×w)|
‖v ×w‖

.

Hence volume of the parallelepiped is

V = base area × height

= ‖v ×w‖ × |u · (v ×w)|
‖v ×w‖

= |u · (v ×w)|

(b) The vectors u,v, and w lie in the same plane if and only if the parallelepiped with

these vectors as adjacent sides has volume zero. Thus, from part (a) the vectors lie in the

same plane if and only if u · (v ×w) = 0.

Problem 2.23

Consider the parallelepiped with adjacent edges u = 3i+ 2j+k,v = i+ j+ 2k,w =

i + 3j + 3k.

(a) Find the volume.

(b) Find the area of the face determined by u and w.

(c) Find the angle between u and the plane containing the face determined by v

and w.
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Solution. (a) Volume, V = |u · (v ×w)|. We have

u · (v ×w) =

∣∣∣∣∣∣∣∣
3 2 1

1 1 2

1 3 3

∣∣∣∣∣∣∣∣
= 3(3− 6)− 2(3− 2) + 1(3− 1)

= −9− 2 + 2

= −9.

Hence volume, V = 9.

(b) Area of the face determined by u and w is ‖u×w‖. We have

u×w =

∣∣∣∣∣∣∣∣
i j k

3 2 1

1 3 3

∣∣∣∣∣∣∣∣
= i(6− 3)− j(9− 1) + k(9− 2)

= 3i− 8j + 7k.

Hence area of the face determined by u and w is

‖−3i− j + 2k‖ =
√

32 + (−8)2 + 72 =
√

122.

(c) We know that v×w is perpendicular to both v and w and so v×w is perpendicular

to the plane containing v and w. Let θ be the angle between u and v × w. Then the

angle between u and the plane containing the face determined by v and w is

±(90◦ − θ).

We have

cos θ =
u · (v ×w)

‖u‖ ‖u×w‖

=
−9√

32 + 22 + 12
√

14

=
−9√

14
√

14

=
−9

14

⇒ θ ≈ 130.01◦

Hence the angle between u and the plane containing the face determined by v and w is

θ − 90◦ = 130.01◦ − 90◦ = 40.01◦.
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Problem 2.24

Show that in 3-space the distance d from a point P to the line L through points A

and B can be expressed as

d =

∥∥∥−→AP ×−→AB∥∥∥∥∥∥−→AB∥∥∥ . (25)

Solution. Refer the figure:

Figure 2.18

It is clear that

d = PQ =
∥∥∥−→AP∥∥∥ sin θ

But
−→
AP ×

−→
AB =

∥∥∥−→AP∥∥∥∥∥∥−→AB∥∥∥ sin θ

so that ∥∥∥−→AP ×−→AB∥∥∥ =
∥∥∥−→AP∥∥∥∥∥∥−→AB∥∥∥ | sin θ| = ∥∥∥−→AP∥∥∥∥∥∥−→AB∥∥∥ sin θ.

(here sin θ > 0 since 0 < θ < π). Hence

d =

∥∥∥−→AP ×−→AB∥∥∥∥∥∥−→AB∥∥∥ .

Problem 2.25

Find the distance between the point P (−3, 1, 2) and the line through the points

A(1, 1, 0) and B(−2, 3,−4).
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Solution. We have

−→
AP = (1− (−3))i + (1− 1)j + (0− 2)k = 4i− 2k
−→
AB = (1− (−2))i + (1− 3)j + (0− (−4))k = 3i− 2j + 4k.

Hence

−→
AP ×

−→
AB =

∣∣∣∣∣∣∣∣
i j k

4 0 −2

3 −2 4

∣∣∣∣∣∣∣∣
= (0× 4− (−2)× (−2))i− (4× 4− 3× (−2))j + (4× (−2)− 3× 0)k

= (0− 4)i− (16 + 6)j + (−8− 0)k

= −4i− 22j− 8k.

Hence ∥∥∥−→AP ×−→AB∥∥∥ =
√

(−4)2 + (−22)2 + (−8)2

=
√

564∥∥∥−→AB∥∥∥ =
√

32 + (−2)2 + 42

=
√

29.

Hence required distance is ∥∥∥−→AP ×−→AB∥∥∥∥∥∥−→AB∥∥∥ =

√
564

29
.

Problem 2.26

What can you say about the angle between nonzero vectors u and v if u · v =

‖u× v‖?

Solution. Let θ be the angle between the vectors u and v. By definition,

u · v = ‖u‖ ‖v‖ cos θ and u× v = ‖u‖ ‖v‖ sin θ.

Also

‖u× v‖ = ‖u‖ ‖v‖ sin θ.

Hence

u · v = ‖u× v‖

⇒ cos θ = sin θ

⇒ θ =
π

4
.
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Problem 2.27

Show that if u and v are vectors in 3-space, then

‖u× v‖2 = ‖u‖2 ‖v‖2 − (u · v)2.

Solution. Let θ be the angle between the vectors u and v. Then we have

‖u× v‖2 = ‖u‖2 ‖v‖2 sin2 θ

= ‖u‖2 ‖v‖2 (1− cos2 θ)

= ‖u‖2 ‖v‖2 − ‖u‖2 ‖v‖2 cos2 θ

= ‖u‖2 ‖v‖2 − (u · v)2.

3 PARAMETRIC EQUATIONSOF LINES

We know that there are infinitely many lines passing through a given point on 2-space

or 3-space. Similarly there are infinitely many lines parallel to a given line or vector.

But there is a unique line passing through a given point and parallel to a given vector in

2-space or 3-space.

Figure 3.1

consider a line L in 3-space that passes through the point P0(x0, y0, z0) and is parallel

to the nonzero vector v = 〈a, b, c〉. Then L consists precisely of those points P (x, y, z) for

which the vector
−−→
PP0 is parallel to v. In other words

−−→
PP0 is a scalar multiple of v, say

−−→
PP0 = tv.

That is

〈x− x0, y − y0, z − z0〉 = 〈ta, tb, tc〉

which implies that

x− x0 = at, y − y0 = bt, z − z0 = ct.
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Thus parametric equations of L are

x = x0 + at, y = y0 + bt, z = z0 + ct.

Theorem3.1

(a) The line in 2-space that passes through the point P0(x0, y0) and is parallel to

the nonzero vector v = 〈a, b〉 = ai + bj has parametric equations

x = x0 + at, y = y0 + bt (26)

(b) The line in 3-space that passes through the point P0(x0, y0) and is parallel to

the nonzero vector v = 〈a, b〉 c = ai + bj + ck has parametric equations

x = x0 + at, y = y0 + bt, z = z0 + ct (27)

VECTOR EQUATIONS OF LINES

Representing (26) and (27) in vector form, we get

〈x, y〉 = 〈x0 + at, y0 + bt〉

〈x, y, z〉 = 〈x0 + at, y0 + bt, z0 + ct〉

which shows that

〈x, y〉 = 〈x0, y0〉+ t 〈a, b〉

〈x, y, z〉 = 〈x0, y0, z0〉+ t 〈a, b, c〉 .

If we write

r = 〈x, y〉 , r0 = 〈x0, y0〉 , v = 〈a, b〉

in 2-space and

r = 〈x, y, z〉 , r0 = 〈x0, y0, z0〉 , v = 〈a, b, c〉

in 3-space, we get the vector equation of line as

r = r0 + tv (28)

in 2-space or 3-space.
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Figure 3.2

Problem 3.1

Find parametric equations of the line

(a) passing through (4, 2) and parallel to v = 〈−1, 5〉;

(b) passing through (1, 2,−3) and parallel to v = 4i + 5j− 7k;

(c) passing through the origin in 3-space and parallel to v = 111.

Solution. (a) We have (x0, y0) = (4, 2) and a = −1, b = 5. Hence parametric equations

are

x = 4− t, y = 2 + 5t

(b) Here (x0, y0, z0) = (1, 2,−3) and a = 4, b = 5, c = −7. Hence parametric equations

are

x = 1 + 4t, y = 2 + 5t, z = −3− 7t.

(c) Here x0 = y0 = z00 and a = 1, b = 1, c = 1. Hence parametric equations are

x = t, y = t, z = t.

Problem 3.2

Find parametric equations describing the line segment joining the points P1(2, 4,−1)

and P2(5, 0, 7).

Solution. The following are steps to find equation of line through P1 and P2:

I Choose any of the points P1 or P2 as point on the line. We choose P1(2, 4,−1).
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I The line is parallel to the vector
−−→
P1P2 = 〈5− 2, 0− 4, 7− (−1)〉 = 〈3,−4, 8〉.

Hence the equation of line is

x = 2 + 3t, y = 4− 4t, z = −1 + 8t.

From these equations, when t = 0 we get P1 and when t = 1, we get P2. Hence equation

of the line segment joining P1 and P2 is

x = 2 + 3t, y = 4− 4t, z = −1 + 8t, 0 ≤ t ≤ 1.

The answer in problem 3.2, can be rewritten using vectors. From the solution,

〈x, y, z〉 = 〈2 + 3t, 4− 4t,−1 + 8t〉 = 〈2, 4,−1〉+ t 〈3,−4, 8〉

⇒ 〈x− 2, y − 4, z + 1〉 = t 〈3,−4, 8〉 , 0 ≤ t ≤ 1

That is the equation is
−−→
P1P = t

−−→
P1P2, 0 ≤ t ≤ 1

where P (x, y, z) is a point on the segment. Generally

Segments

If P is point on the line segment joining the points P1 and P2, then the equation of

the line segment is
−−→
P1P = t

−−→
P1P2, 0 ≤ t ≤ 1. (29)

Problem 3.3

The parametric equations of a line are

x = 2− t, y = −3 + 5t, z = t

(a) Find a point on the line

(b) Determine a vector parallel to the line

Solution. Compare with the (27) we get (2,−3, 0) as a point on the line. Also it is

parallel to the vector =− i + 5j + k (since the coefficients of t are −1, 5, 1).
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Problem 3.4

Find parametric equations of the line that satisfies the stated conditions

1. The line through (−1, 2, 4) that is parallel to 3i− 4j + k.

2. The line through (−2, 0, 5) that is parallel to the line given by x = 1 + 2t, y =

4− t, z = 6 + 2t.

3. The line that is tangent to the circle x2 + y2 = 25 at the point (3,−4).

4. Where does the line 〈x, y〉 = 〈4t, 3t〉 intersect the circle x2 + y2 = 25?

5. Where does the line x = 1 + 3t, y = 2− t intersect

(a) the x-axis (b) the y-axis

(c) the parabola y = x2?

Solution. 1. Clearly (x0, y0, z0) = (−1, 2, 4) and a = 3, b = −4, c = 1. So the equation

is

x = −1 + 3t, y = 2− 4t, z = 4 + t.

2. Clearly (x0, y0, z0) = (−2, 0, 5) and since the given line is parallel to the vector

2i− j + 2k, we have a = 2, b = −1, c = 2. So the equation is

x = −2 + 2t, y = −t, z = 5 + 2t.

3. Here we first find slope of the line. It is same as slope of the tangent to the given

circle at (3,−4). From the equation x2 + y2 = 25, we have

2x+ 2y
dy

dx
= 0⇒ dy

dx
= −x

y
.

Hence slope of the line is

− 3

−4
=

3

4
.

Using the slope, we find a vector parallel to the line. Recall that parallel lines and

vector have same slope. Thus a vector parallel to the line is

v = 4i + 3j.

Since the line passes through (3,−4), the parametric equations are

x = 3 + 4t, y = −4 + 3t

4. Clearly any point on the line is x = 4t, y = 3t. Substituting in the equation of circle

we get

(4t)2 + (3t)2 = 25⇒ 25t2 = 25⇒ t2 = 1⇒ ±1

Hence the line intersect the circle at (4, 3) and (−4,−3).
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5. (a) At x-axis, y = 0, that is, 2 − t = 0 ⇒ t = 2. Hence the point of intersection

with x-axis is

x = 1 + 3× 2 = 7, y = 0⇒ (7, 0)

(b) At y-axis, x = 0, that is, x = 1 + 3t = 0 ⇒ t = −1
3
. Hence the point of

intersection with y-axis is

x = 0, y = 2− (−1

3
) = 2 +

1

3
=

7

3
⇒
(

0,
7

3

)
(c) At the parabola y = x2, we have

2− t = (1 + 3t)2 ⇒ 9t2 + 7t− 1 = 0.

Solving this equation we get

t =
−7±

√
85

18
.

When t = −7+
√
85

18
, we get

x = 1 + 3× −7 +
√

85

18

=
18− 21 + 3

√
85

18

=
−3 + 3

√
85

18

=
−1 +

√
85

6

y = 2− −7 +
√

85

18

=
36 + 7−

√
85

18

=
43−

√
85

18

When t = −7−
√
85

18
, we get

x = 1 + 3× −7 +
√

85

18

=
18− 21− 3

√
85

18

=
−3− 3

√
85

18

=
−1−

√
85

6

y = 2− −7−
√

85

18

=
36 + 7 +

√
85

18

=
43 +

√
85

18
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Hence points of intersection with the parabola y = x2 are(
−1 +

√
85

6
,
43−

√
85

18

)
and

(
−1−

√
85

6
,
43 +

√
85

18

)
.

Problem 3.5

Find the intersections of the lines with the xy-plane, the xz-plane, and the yz-plane.

(a) x = −1 + 2t, y = 3 + t, z = 4− t

(b) x = −2, y = 4 + 2t, z = −3 + t

Solution. (a) On xy-plane, z = 0, so that

4− t = 0⇒ t = 4.

Then

x = −1 + 2× 4 = 7, y = 3 + 4 = 7, z = 0.

Hence point of intersection with xy-plane is

(7, 7, 0)

On xz-plane, y = 0, so that

3 + t = 0⇒ t = −3.

Then

x = −1 + 2× (−3) = −7, y = 0, z = 4− (−3) = 7.

Hence point of intersection with xz-plane is

(−7, 0, 7)

On yz-plane, x = 0, so that

−1 + 2t = 0⇒ t =
1

2
.

Then

x = 0, y = 3 +
1

2
=

7

2
, z = 4− 1

2
=

7

2
.

Hence point of intersection with yz-plane is(
0,

7

2
,
7

2

)
.

(b) Left as exercise. (Note that on yz-plane, x = 0. Here x = −2, which shows that the

line does not intersect the yz-plane.)
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Problem 3.6

Where does the line x = 1 + t, y = 3− t, z = 2t intersect the cylinder x2 + y2 = 16?

Solution. Substituting values of x, y in the equation of cylinder we get

(1 + t)2 + (3− t)2 = 16

⇒ 1 + 2t+ t2 + 9− 6t+ t2 = 16

⇒ 2t2 − 4t− 6 = 0

⇒ t2 − 2t− 3 = 0

⇒ (t+ 1)(t− 3) = 0⇒ t = −1, 3.

Hence points of intersection are

(1− 1, 3− (−1), 2(−1)) = (0, 4,−2)

and

(1 + 3, 3− 3, 2× 3) = (4, 0, 6).

Problem 3.7

Where does the line x = 2− t, y = 3t, z = −1 + 2t intersect the plane 2y + 3z = 6?

Solution. Left as exercise. (Ans.
(
5
4
, 9
4
, 1
2

)
).

Problem 3.8

Let L1 and L2 be the lines

L1 : x = 1 + 4t, y = 5− 4t, z = −1 + 5t

L2 : x = 2 + 8t, y = 4− 3t, z = 5 + t

(a) Are the lines parallel?

(b) Do the lines intersect?

Solution. (a) L1 is parallel to the vector

u1 = 〈4,−4, 5〉

and L2 is parallel to the vector

u2 = 〈8,−3, 1〉 .

Clearly the vectors are not parallel, since u2 is not a scalar multiple of u1. (Here x

component of u1 is 4 and x component of u2 is 8, moreover 8 = 4 × 2. But for y

component of u1 is −4 and y component of u2 is −3 6= −4× 2.)
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Hence the lines are not parallel.

(b) For L1 and L2 to intersect at some point (x0, y0, z0) these coordinates would have to

satisfy the equations of both lines. That is

x0 = 1 + 4t1, y0 = 5− 4t1, z0 = −1 + 5t1

and

x0 = 2 + 8t2, y0 = 4− 3t2, z0 = 5 + t2

for some values t1 and t2 of t. From these we get

1 + 4t1 = 2 + 8t2

5− 4t1 = 4− 3t2

−1 + 5t1 = 5 + t2

We solve the first two equations to find t1 and t2. If the obtained values satisfy the third

equation, the lines intersect, do not intersect otherwise.

Adding the first two equations, we get

6 = 6 + 5t2 ⇒ t2 = 0.

Substituting in first equation, we get,

1 + 4t1 = 2⇒ t1 =
1

4
.

Clearly these values do not satisfy the third equation, since third equation becomes,

−1 + 5× 1

4
= 5 + 0

⇒ 1

4
= 5.

Hence the lines do not intersect.

I Two lines in 3-space that are not parallel and do not intersect are called skew lines.

Figure 3.3
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Problem 3.9

Show that the lines L1 and L2 intersect, and find their point of intersection.

(a) L1 : x+ 1 = 4t, y − 3 = t, z − 1 = 0

L2 : x+ 13 = 12t, y − 1 = 6t, z − 2 = 3t

(b) L1 : x = 2 + t, y = 2 + 3t, z = 3 + t

L2 : x = 2 + t, y = 3 + 4t, z = 4 + 2t

Solution. (a) The given equations are

L1 : x = −1 + 4t, y = 3 + t, z = 1

L2 : x = −13 + 12t, y = 1 + 6t, z = 2 + 3t.

Let (a, b, c) be the point of intersection. Then we get

a = −1 + 4t1, b = 3 + t1, c = 1

a = −13 + 12t2, b = 1 + 6t2, c = 2 + 3t2

for some values t1, t2 of t. Which gives

1 + 4t1 = −13 + 12t2

3 + t1 = 1 + 6t2

2 + 3t2 = 1.

From the third equation

3t2 = −1⇒ t2 = −1

3
.

Substituting in the second equation, we get

3 + t1 = 1 + 6×
(
−1

3

)
=⇒ t1 = −3 + 1− 2 = −4.

Using these values first equation becomes

−1 + 4× (−4) = −13 + 12×
(
−1

3

)
⇒ −1− 16 = −13− 4

⇒ −17 = −17

that is, t1 = −4 and t2 = −1
3

satisfies all equations so that the lines intersect at the point

t = t1 = −4 in L1 (or t = t2 = −1
3

in L2.) When t = t1 = −4, from L1, we have

a = −1 +×(−4) = −17, b = 3− 4 = −1, c = 1.
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Hence the point of intersection is

(−17,−1, 1).

Verify that same point is obtained from L2 when t = t2 = −1
3
.

(b) Left as exercise.

Problem 3.10

1. Show that the lines L1 and L2 are skew.

(a) L1 : x = 1 + 7t, y = 3 + t, z = 5− 3t

L2 : x = 4− t, y = 6, z = 7 + 2t

(b) L1 : x = 2 + 8t, y = 6− 8t, z = 10t

L2 : x = 3 + 8t, y = 5− 3t, z = 6 + t

2. Determine whether the lines L1 and L2 are parallel.

(a) L1 : x = 3− 2t, y = 4 + t, z = 6− t
L2 : x = 5− 4t, y = −2 + 2t, z = 7− 2t

(b) L1 : x = 5 + 3t, y = 4− 2t, z = −2 + 3t

L2 : x = −1 + 9t, y = 5− 6t, z = 3 + 8t

3. Determine whether the points P1, P2, and P3 lie on the same line.

(a) P1(6, 9, 7), P2(9, 2, 0), P3(0,−5,−3)

(b) P1(1, 0, 1), P2(3,−4,−3), P3(4,−6,−5)

Solution. The problems 1 and 2 are left as exercise. (Hint. for 2.(a), L1 is parallel to

the vector v1 = 〈−2, 1,−1〉 and L2 is parallel to the vector v2 = 〈−4, 2,−2〉 = 2v1.)

3. We determine the vectors
−−→
P1P2 and

−−→
P2P3. If they are parallel, then since they have

one common end, the points will lie on a line, otherwise not.

(a) We have
−−→
P1P2 = 〈9− 6, 2− 9, 0− 7〉 = 〈3,−7,−7〉

and
−−→
P2P3 = 〈0− 9,−5− 2,−3− 0〉 = 〈−9,−7,−3〉 .

The vectors are not parallel. So the points do not lie on a line.

(b) Left as exercise.
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Problem 3.11

Show that the lines L1 and L2 are the same.

(a) L1 : x = 1 + 3t, y = −2 + t, z = 2t

L2 : x = 4− 6t, y = −1− 2t, z = 2− 4t

(b) L1 : x = 3− t, y = 1 + 2t

L2 : x = −1 + 3t, y = 9− 6t

Solution. In each case we show that the lines have a common point and they are parallel.

(a) When t = 0, we see that (1,−2, 0) is a point on L1. For L2, the x coordinate of a

point is 1 when,

4− 6t = 1⇒ −6t = −3⇒ t =
1

2
.

Now for t = 1
2
, in L2,

y = −1− 2× 1

2
= −1− 1 = −2 and z = 2− 4× 1

2
= 2− 2 = 0.

Hence L2 also passes through (1,−2, 0).

The line L1 is parallel to the vector v1 = 〈3, 1, 2〉 and L2 is parallel to the vector

v2 = 〈−6,−2,−4〉 = −2 〈3, 1, 2〉 = −2v1. Hence L1 and L2 are parallel.

Since L1 and L2 are parallel and they pass through (1,−2, 0), they are same.

(b) Left as exercise.

Problem 3.12

Describe the line segment represented by the vector equation.

(a) 〈x, y, z〉 = 〈−2, 1, 4〉+ t 〈3, 0,−1〉 , (0 ≤ t ≤ 3)

(b) 〈x, y〉 = 〈1, 0〉+ t 〈−2, 3〉 , (0 ≤ t ≤ 2)

(c) Find the point on the line segment joining P1(1, 4,−3) and P2(1, 5,−1) that

is 2
3

of the way from P1 to P2.

(d) Find the point on the line segment joining P1(3, 6) and P2(8,−4) that is 2
5

of

the way from P1 to P2.

Solution. (a) When t = 0 we get (x, y, z) = (−2, 1, 4) and when t = 3 we have (x, y, z) =

(−2, 1, 4) + 3(3, 0,−1) = (7, 1, 1). That is the given equation is a line segment joining

(−2, 1, 4) and (7, 1, 1).

(b) Left as exercise.
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(c) Suppose P (x, y, z) is a point on the segment 2
3

units of the way from P1 to P2. Then

from (29), we have
−−→
PP1 =

2

3

−−→
P1P2.

That is

〈x− 1, y − 4, z − (−3)〉 =
2

3
〈1− 1, 5− 4,−1− (−3)〉

=
2

3
〈0, 1, 2〉

=

〈
0,

2

3
,
4

3

〉
⇒ 〈x, y, z〉 = 〈1, 4,−3〉+

〈
0,

2

3
,
4

3

〉
=

〈
1, 4 +

2

3
,−3 +

4

3

〉
=

〈
1,

14

3
,−5

3

〉
.

Hence the point is
(
1, 14

3
,−5

3

)
.

(d) Left as exercise.

Problem 3.13

Show that the lines L1 and L2 are parallel, and find the distance between them.

(a) L1 : x = 2− t, y = 2t, z = 1 + t

L2 : x = 1 + 2t, y = 3− 4t, z = 5− 2t

(b) L1 : x = 2t, y = 3 + 4t, z = 2− 6t

L2 : x = 1 + 3t, y = 6t, z = −9t

Solution. (a) The line L1 is parallel to the vector v1 = 〈−1, 2, 1〉 and L2 is parallel to

the vector v2 = 〈2,−4,−2〉. Clearly

v2 = −2v1.

Hence the lines are parallel. We use (25) to find the distance between the lines.

Method: Take a point say P on one line and two points say A,B on the other line.

Then by (25), distance d between the lines is

d =

∥∥∥−→AP ×−→AB∥∥∥∥∥∥−→AB∥∥∥ .

Consider L1. Clearly P (2, 0, 1) is a point on L1. Similarly we choose A(1, 3, 5) on L2.

For B, put a value for t in L2. We choose t = 1, then from L2 we have B = (3,−1, 3).

Then
−→
AP = 〈1,−3,−4〉 and

−→
AB = 〈2,−4,−2〉
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and

−→
AP ×

−→
AB =

∣∣∣∣∣∣∣∣
i j k

1 −3 −4

2 −4 −2

∣∣∣∣∣∣∣∣
= (6− 16)i− (−2 + 8)j + (−4 + 6)k

= −10i− 6j + 2k.

So that ∥∥∥−→AP ×−→AB∥∥∥ =
√

100 + 36 + 4

=
√

140

= 2
√

35∥∥∥−→AB∥∥∥ =
√

4 + 16 + 4

=
√

24

= 2
√

6.

Hence

d =
2
√

35

2
√

6

=

√
35

6
.

(b) Left as exercise.

Problem 3.14

(a) Find parametric equations for the line through the points (x0, y0, z0) and

(x1, y1, z1).

(b) Find parametric equations for the line through the point (x1, y1, z1) and par-

allel to the line x = x0 + at, y = y0 + bt, z = z0 + ct

Solution. (a) We need a point on the line and a vector parallel to the line. Here

A(x0, y0, z0) and B(x1, y1, z1) are points on the line. We choose A. Clearly the line is

parallel to
−→
AB = 〈x1 − x0, y1 − y0, z1 − z0〉. Hence a parametric equation of the line is

x = x0 + (x1 − x0)t, y = y0 + (y1 − y0)t, z = z0 + (z1 − z0). (30)

Find another parametric equations of the line.

(b) Left as exercise.
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Problem 3.15

Let L be the line that passes through the point (x0, y0, z0) and is parallel to the

vector v = 〈a, b, c〉, where a, b, and c are nonzero. Show that a point (x, y, z) lies

on the line L if and only if

x− x0
a

=
y − y0
b

=
z − z0
c

(31)

Solution. From the given information, parametric equations of the line are

x = x0 + at, y = y0 + bt, z = z0 + ct.

From these we have

x− x0 = at, y − y0 = bt, z − z0 = ct.

That is
x− x0
a

= t,
y − y0
b

= t
z − z0
c

= t.

Hence we get
x− x0
a

=
y − y0
b

=
z − z0
c

as the equation of the line

I These equations (31), which are called the symmetric equations of L, provide a

nonparametric representation of L.

Problem 3.16

(a) Describe the line whose symmetric equations are

x− 1

2
=
y + 3

4
= z − 5.

(b) Find parametric equations for the line in part (a).

Solution. (a) The equation can be rewritten as

x− 1

2
=
y + 3

4
=
z − 5

1
.

Comparing with (31), we see that the line passes through the point (1,−3, 5) and it is

parallel to the vector 2i + 4j + k.

(b) Parametric equations is

x = 1 + 2t, y = −3 + 4t, z = 5 + t.
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Problem 3.17

(a) Describe the line whose symmetric equations are

x+ 3
2

4
=
z − 7

−2
, y = 2.

(b) Find parametric equations for the line in part (a).

Solution. (a) The equation can be rewritten as

x+ 3
2

4
=
z − 7

−2
, y = 2 + 0t.

Comparing with (31), we see that the line passes through the point
(
−3

2
, 2, 7

)
and it is

parallel to the vector 4i− 2k.

(b) Parametric equations is

x = −3

2
+ 4t, y = 2, z = 7− 2t.

Problem 3.18

Consider the lines L1 and L2 whose symmetric equations are

L1 :
x− 1

2
=
y + 3

2

1
=
z + 1

2

L2 :
x− 4

−1
=
y − 3

−2
=
z + 4

2

(a) Are L1 and L2 parallel? Perpendicular?

(b) Find parametric equations for L1 and L2.

(c) Do L1 and L2 intersect? If so, where?

Solution. Lines L1 and L2 are parallel to the vectors v1 = 〈2, 1, 2〉 and v2 = 〈−1,−2, 2〉
respectively.

(a) Since v1 and v2 are not multiples of each other, the lines are not parallel. We have

v1 · v2 = 2(−1) + 1(−2) + 2× 2 = 0

so that the lines are perpendicular.

(b) L1: Since
(
1,−3

2
,−1

)
is a point on the line, parametric equations are

x = 1 + 2t, y = −3

2
+ t, z = −1 + 2t.

L2: Since (4, 3,−4) is a point on the line, parametric equations are

x = 4− t, y = 3− 2t, z = −4 + 2t.
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(c) Suppose the lines intersect at (x0, y0, z0). Then from the parametric equations,

x0 = 1 + 2t1, y0 = −3

2
+ t1, z0 = −1 + 2t1

x0 = 4− t2, y0 = 3− 2t2, z0 = −4 + 2t2

for some t1 and t2. Then we get

1 + 2t1 = 4− t2

−3

2
+ t1 = 3− 2t2

−1 + 2t1 = −4 + 2t2

From the first and third equations, we get

2 = 8− 3t2 ⇒ 3t2 = 6⇒ t2 = 2.

Substituting in the first, we get

1 + 2t1 = 2⇒ t1 =
1

2
.

Substituting in the second equation we get

−3

2
+

1

2
= 3− 2⇒ −1 = −1.

Hence the lines intersect and the point of intersection is

(x0, y0, z0) = (4− 2, 3− 2× 2,−4 + 2× 2) = (2,−1, 0).

Jeeja A. V. jeejamath@gmail.com



80

Problem 3.19

1. Let L1 and L2 be the lines whose parametric equations are

L1 : x = 1 + 2t, y = 2− t, z = 4− 2t

L2 : x = 9 + t, y = 5 + 3t, z = −4− t

(a) Show that L1 and L2 intersect at the point (7,−1,−2).

(b) Find, to the nearest degree, the acute angle between L1 and L2 at their

intersection.

(c) Find parametric equations for the line that is perpendicular to L1 and

L2 and passes through their point of intersection.

2. Let L1 and L2 be the lines whose parametric equations are

L1 : x = 4t, y = 1− 2t, z = 2 + 2t

L2 : x = 1 + t, y = 1− t, z = −1 + 4t

(a) Show that L1 and L2 intersect at the point (2, 0, 3).

(b) Find, to the nearest degree, the acute angle between L1 and L2 at their

intersection.

(c) Find parametric equations for the line that is perpendicular to L1 and

L2 and passes through their point of intersection.

Solution. 1. (a) Left as exercise. (Hint put t = 3 in the first. Find a similar value

of t for second line, so that (7,−1,−2) lies on both lines.)

Also show that the lines are not parallel.

(b) L1 is parallel to the vector v1 = 〈2,−1,−2〉 and L2 is parallel to the vector

v2 = 〈1, 3,−1〉. Let θ be the acute angle between L1 and L2. It is same as the

angle between v1 and v2. Then

cos θ =
v1 · v2

‖v1‖ ‖v2‖

=
(2× 1) + (−1× 3) + (−2×−1)√

22 + (−1)2 + (−2)2
√

12 + 32 + (−1)2

=
1√

9
√

11

=
1

3
√

11

⇒ θ ≈ 84.23◦.

(c) The line L perpendicular to L1 and L2 is parallel to the vector v = v1 × v2.
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We have

v1 × v2 =

∣∣∣∣∣∣∣∣
i j k

2 −1 −2

1 3 −1

∣∣∣∣∣∣∣∣
= (1 + 6)i− (−2 + 2)j + (6 + 1)k

= 7i + 7k

⇒ v = 7i + 7k.

Since L passes through (7,−1,−2), the equation of L is

x = 7 + 7t, y = −1 + 0t = −1, z = −2 + 7t.

2. Left as exercise.

Problem 3.20

Find parametric equations of the line that contains the point P and intersects the

line L at a right angle, and find the distance between P and L.

(a) P (0, 2, 1)

L : x = 2t, y = 1− t, z = 2 + t

(b) P (3, 1,−2)

L : x = −2 + 2t, y = 4 + 2t, z = 2 + t

Solution. (a) Let the required line be L′. Given that P (0, 2, 1) is a point on the line.

Now we need a vector parallel to L′. Let v be a vector parallel to L′.

Figure 3.4

Jeeja A. V. jeejamath@gmail.com



82

Choose points A,B on the line L. From the figure it is clear that v is parallel to
−→
QP

which the vector component of
−→
AP orthogonal to

−→
AB. To find

−→
QP we first find

−→
AQ which

is the projection of
−→
AP on

−→
AB.

Put t = 0, 1 in the equation of L, we get A(0, 1, 2), B(2, 0, 3) as points on L. Then

−→
AP = 〈0, 1,−1〉 and

−→
AB = 〈2,−1, 1〉 .

Now

−→
AQ = proj−→

AB

−→
AP =

−→AP ·−→AB∥∥∥−→AB∥∥∥2
−→AB

where
−→
AP ·−→AB = 0− 1− 1 = −2 and

∥∥∥−→AB∥∥∥2 = 22 + (−1)2 + 12 = 6.

Hence
−→
AQ =

−2

6
〈2,−1, 1〉 = −1

3
〈2,−1, 1〉 =

〈
−2

3
,
1

3
,−1

3

〉
and so

−→
QP =

−→
AP −

−→
AQ

= 〈0, 1,−1〉 −
〈
−2

3
,
1

3
,−1

3

〉
=

〈
2

3
,
2

3
,−2

3

〉
=

2

3
〈1, 1,−1〉 .

Since v is parallel to
−→
QP , we can choose

v = 〈1, 1,−1〉

is parallel to L′. Thus parametric equations of L′ are

x = 0 + t = t, y = 2 + t, z = 1− t.

We next find the distance d of P from L. Using (25), we see that

d =

∥∥∥−→AP ×−→AB∥∥∥∥∥∥−→AB∥∥∥ .

Rest is left as exercise.

(b) Left as exercise.
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4 PLANES IN 3-SPACE

We know that there are infinitely many planes passing through a given point or a

given line on 3-space. Similarly there are infinitely many planes parallel to a given line or

vector and infinitely many planes parallel to a given plane. Also there are infinitely many

planes perpendicular to a given line or vector and infinitely many planes perpendicular

to a given plane. But

I there is a unique plane passing through a given point and parallel to a given vector

I there is a unique plane passing through a given point and perpendicular to a given

vector.

I there is a unique plane passing through a given point and parallel to a given plane.

We have seen that the points of the form (a, y, z) where a is a constant lie on the plane

parallel to yz-plane and passing through (a, 0, 0). The equation of such a plane is given

by x = a. Similarly, the graph of y = b is the plane through (0, b, 0) that is parallel to

the xz-plane, and the graph of z = c is the plane through (0, 0, c) that is parallel to the

xy-plane.

Figure 4.1

PLANES DETERMINED BY A POINT AND A NORMAL

VECTOR

Suppose a given plane passes through a point P0(x0, y0, z0) and perpendicular to a vector

n = 〈a, b, c〉. A vector perpendicular to a plane is called a normal to the plane. We

derive equation of the plane as follows.
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Figure 4.2

Consider a point P (x, y, z) on the plane. Define the vectors r and r0 as

r = 〈x, y, z〉 and r0 = 〈x0, y0, z0〉 .

Then

r− r0 = 〈x− x0, y − y0, z − z0〉

lies on the plane so that it is perpendicular to the normal vector n. Hence we have

n · (r− r0) = 0 (32)

is the equation of the plane. Equivalently we have

〈a, b, c〉 · 〈x− x0, y − y0, z − z0〉 = 0 (33)

or

a(x− x0) + b(y − y0) + c(z − z0) = 0 (34)

are equations of the same plane. This is called the point-normal form of the

equation of a plane.
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Problem 4.1

Find an equation of the plane that passes through the point P and has the vector

n as a normal.

(a) P (2, 6, 1); n = 〈1, 4, 2〉

(b) P (−1,−1, 2); n = 〈−1, 7, 6〉

(c) P (1, 0, 0); n = 〈0, 0, 1〉

(d) P (0, 0, 0); n = 〈2,−3,−4〉

Solution. (a) Here (x0, y0, z0) = (2, 6, 1) and 〈a, b, c〉 = 〈1, 4, 2〉. Since the equation is

a(x− x0) + b(y − y0) + c(z − z0) = 0

we have

1(x− 2) + 4(y − 6) + 2(z − 1) = 0⇒ x− 2 + 4y − 24 + 2z − 2 = 0

which becomes

x+ 4y + 2z − 28 = 0.

(b)-(d) are left as exercise.

Problem 4.2

Find an equation of the plane that passes through the given points.

(a) (−2, 1, 1), (0, 2, 3), and (1, 0,−1)

(b) (3, 2, 1), (2, 1,−1), and (−1, 3, 2)

Solution. Method : Consider three points (non-collinear) P1(x1, y1, z1), P2(x2, y2, z2) and

P3(x3, y3, z3), there is a unique plane containing them. To find an equation of that plane,

we need the following

I a point on the plane: choose any one of the points P1, P2, P3,

I a normal to the plane: note that any vector normal to the plane will be perpendicular

to the vectors lying on the plane. We choose two vectors using P1, P2, P3, say
−−→
P1P2

and
−−→
P1P3. We know that

−−→
P1P2 ×

−−→
P1P3 is a vector perpendicular to both

−−→
P1P2 and

−−→
P1P3, so that it will be parallel to the normal. We can choose

−−→
P1P2 ×

−−→
P1P3 as a

normal vector.
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(a) Let P1(−2, 1, 1), P2(0, 2, 3), and P3(1, 0,−1) be the points. We choose P1(−2, 1, 1) as

a point on the plane.

Consider

−−→
P1P2 = 〈0− (−2), 2− 1, 3− 1〉

= 〈2, 1, 2〉 ,
−−→
P1P3 = 〈1− (−2), 0− 1,−1− 1〉

= 〈3,−1,−2〉 .

Then

n =
−−→
P1P2 ×

−−→
P1P3

=

∣∣∣∣∣∣∣∣
i j k

2 1 2

3 −1 −2

∣∣∣∣∣∣∣∣
= (−2 + 2)i− (−4− 6)j + (−2− 3)k

= 10j− 5k.

Hence an equation to the plane is

0(x− (−2)) + 10(y − 1) + (−5)(z − 1) = 0

⇒ 10y − 10− 5z + 5 = 0

⇒ 10y − 5z − 5 = 0

⇒ 2y − z − 1 = 0

Exercise: Use point on plane as P2 and find the equation. (what is the resulting equation?)

Do it with P3 too. Also repeat with vectors
−−→
P2P3 and

−−→
P2P1 to find the normal. Write

your conclusion.

(b) Left as exercise.

We now derive the general form of a plane

Theorem4.1

If a, b, c, and d are constants, and a, b, and c are not all zero, then the graph of the

equation

ax+ by + cz + d = 0 (35)

is a plane that has the vector n = 〈a, b, c〉 as a normal.

Proof. Since a, b and c not all zero, there is at least one point (x0, y0, z0) whose coordinates

satisfy (35). For example if a 6= 0, then if we let (x0, y0, z0) =

(
−d
a
, 0, 0

)
we see that

ax0 + by0 + cz0 + d = a

(
−d
a

)
+ b× 0 + c× 0 + d = −d+ d = 0.
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Similarly we can find at least point in the case of b 6= 0, c 6= 0. Hence we always get a

point P0(x0, y0, z0) on 3-space such that

ax0 + by0 + cz0 + d = 0.

Subtracting it from the given equation in (35), we get

(ax+ by + cz + d)− (ax0 + by0 + cz0 + d) = 0

⇒ a(x− x0) + b(y − y0) + c(z − z0) = 0

which represents a plane passing through P0(x0, y0, z0) and having n = 〈a, b, c〉 as the

normal, by (34).

Problem 4.3

Determine whether the planes are parallel, perpendicular, or neither.

1. (a) 2x− 8y − 6z − 2 = 0, −x+ 4y + 3z − 5 = 0

(b) 3x− 2y + z = 1, 4x+ 5y − 2z = 4

(c) x− y + 3z − 2 = 0, 2x+ z = 1

2. (a) 3x− 2y + z = 4, 6x− 4y + 3z = 7

(b) y = 4x− 2z + 3, x = 1
4
y + 1

2
z

(c) x+ 4y + 7z = 3, 5x− 3y + z = 0

Solution. Method : From the equation determine normal to each plane. The planes are

parallel or perpendicular, whenever the normals are parallel or perpendicular respectively.

1(b) The normal vectors are

n1 = 〈3,−2, 1〉 and n2 = 〈4, 5,−2〉

Clearly n1 and n2 are not parallel, so the planes are not parallel. Also

n1 · n2 = 3× 4 + (−2)× 5 + 1× (−2) = 0

so the planes are perpendicular.

2(b) The equations can be rewritten as

4x− y − 2z + 3 = 0, x− 1

4
y − 1

2
z = 0.

So the normal vectors are

n1 = 〈4,−1,−2〉 and n2 =

〈
1,−1

4
,−1

2

〉
.
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Clearly

n1 = 4n2

so that the planes are parallel.

Other problems are left as exercise.

Problem 4.4

Determine whether the line and plane are parallel, perpendicular, or neither.

1. (a) x = 4 + 2t, y = −t, z = −1− 4t;

3x+ 2y + z − 7 = 0

(b) x = t, y = 2t, z = 3t;

x− y + 2z = 5

(c) x = −1 + 2t, y = 4 + t, z = 1− t;
4x+ 2y − 2z = 7

2. (a) x = 3− t, y = 2 + t, z = 1− 3t;

2x+ 2y − 5 = 0

(b) x = 1− 2t, y = t, z = −t;
6x− 3y + 3z = 1

(c) x = t, y = 1− t, z = 2 + t;

x+ y + z = 1

Solution. Method : Find normal n to the plane and a vector v parallel to the line. If

n is parallel to v, then the line is perpendicular to the plane. If n is perpendicular to v,

then the line is parallel to the plane.

1(a) Here normal n to the plane is

n = 〈3, 2, 1〉

and the vector v parallel to the line is

v = 〈2,−1,−4〉 .

Since n and v are not parallel, the line is not perpendicular to the plane.

Also

n · v = 3× 2 + 2× (−1) + 1× (−4) = 6− 2− 4 = 0

so that n is perpendicular to v, which imply that the line is parallel to the plane.

1(b) Here normal n to the plane is

n = 〈1,−1, 2〉
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and the vector v parallel to the line is

v = 〈1, 2, 3〉 .

Clearly n is not parallel to v. Also

n · v = 1× 1 + (−1)× 2 + 2× 3 = 1− 2 + 6 = 5 6= 0

so that n is not perpendicular to v.

Hence the line is neither parallel nor perpendicular to the plane.

2(b) Here normal n to the plane is

n = 〈6,−3, 3〉

and the vector v parallel to the line is

v = 〈−2, 1,−1〉 .

Clearly n = −3v so that n is parallel to v. Hence the line is perpendicular to the plane.

I Other problems are left as exercise.

Problem 4.5

Determine whether the line and plane intersect; if so, find the coordinates of the

intersection.

1. (a) x = t, y = t, z = t;

3x− 2y + z − 5 = 0

(b) x = 2− t, y = 3 + t, z = t;

2x+ y + z = 1

2. (a) x = 3t, y = 5t, z = −t;
2x− y + z + 1 = 0

(b) x = 1 + t, y = −1 + 3t, z = 2 + 4t;

x− y + 4z = 7

Solution. Method : Substitute the values of x, y and z in t from the line to the equation

of plane and solve for t. If the line interprets the plane, we get a value for t and the point

of intersection will be obtained from the equation of line. If they do not intersect, we will

not get a value for t

1(a) Substituting x = t, y = t, and z = t in the equation of plane, we get

3t− 2t+ t− 5 = 0⇒ 2t = 5⇒ t =
5

2
.
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Hence the line intersect the plane at t = 5
2
. The point of intersection is(

5

2
,
5

2
,
5

2

)
1(b) Substituting x = 2− t, y = 3 + t, and z = t in the equation of plane, we get

2(2− t) + 3 + t+ t = 1⇒ 4− 2t+ 3 + 2t = 1⇒ 7 = 1.

Hence the line does not intersect the plane.

Problems 2(a), (b) are left as exercise.

INTERSECTING PLANES

Two distinct intersecting planes determine two positive angles of intersection - an (acute)

angle θ that satisfies the condition 0 ≤ θ ≤ π
2

and the supplement of that angle. If n1 and

n2 are normals to the planes, then depending on the directions of n1 and n2, the angle θ

is either the angle between n1 and n2 or the angle between n1 and −n2. In both cases,

from Theorem 2.4, the acute angle θ between the planes is given by:

cos θ =
|n1 · n2|
‖n1‖ ‖n2‖

(36)

Proof. If θ is the angle between n1 and n2, then by (10)

cos θ =
n1 · n2

‖n1‖ ‖n2‖

and if θ is the angle between n1 and −n2, then

cos θ = − n1 · n2

‖n1‖ ‖n2‖
.

That is

cos θ = ± n1 · n2

‖n1‖ ‖n2‖
.

Since 0 ≤ θ ≤ π
2
, we have

cos θ ≥ 0 ⇒ ± n1 · n2

‖n1‖ ‖n2‖
≥ 0

so that

± n1 · n2

‖n1‖ ‖n2‖
=

∣∣∣∣ n1 · n2

‖n1‖ ‖n2‖

∣∣∣∣ =
|n1 · n2|
‖n1‖ ‖n2‖

.

Hence we get

cos θ =
|n1 · n2|
‖n1‖ ‖n2‖

.
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Figure 4.3

Problem 4.6

Find the acute angle of intersection of the planes to the nearest degree.

(a) x+ 2y − 2z = 5 and 6x− 3y + 2z = 8

(b) 2x− 4y + 4z = 6 and 6x+ 2y − 3z = 4

(c) x = 0 and 2x− y + z − 4 = 0

Solution. (a) We have

n1 = 〈1, 2,−2〉 and n2 = 〈6,−3, 2〉 .

Then

n1 · n2 = 1× 6 + 2× (−3) + (−2)× 2 = −4.

and

‖n1‖ =
√

9 = 3 and ‖n2‖ =
√

49 = 7.

Thus the acute angle θ between the planes is given by

cos θ =
4

3× 7
=

4

21

which shows that

θ ≈ 79.02◦.

(b) Left as exercise.

(c) We have

n1 = 〈1, 0, 0〉 and n2 = 〈2,−1, 1〉 .

Then

n1 · n2 = 1× 2 + 0× (−1) + 0× 1 = 2.
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and

‖n1‖ =
√

1 = 1 and ‖n2‖ =
√

6.

Thus the acute angle θ between the planes is given by

cos θ =
2

1×
√

6
=

2√
6

which shows that

θ ≈ 35.26◦.

I It is clear that two planes intersect at a line.

Problem 4.7

Find parametric equations of the line of intersection of the planes.

(a) −2x+ 3y + 7z + 2 = 0 and x+ 2y − 3z + 5 = 0

(b) 3x− 5y + 2z = 0 and z = 0.

(c) 2x− 4y + 4z = 6 and 6x+ 2y − 3z = 4.

Solution. Method: Take L as line of intersection. We need a vector parallel to L and a

point on L. Take normals n1,n2 of the planes. Since the line L is perpendicular to both

n1 and n2, it will be parallel to a vector orthogonal to both n1 and n2. We know that

v = n1 × n2 is perpendicular to both n1 and n2. Hence we choose v = n1 × n2 as the

vector parallel to L. To find a point on L, we solve the equations of the plane, since any

point on L lies on both of the planes.

(a) We have the normal vectors

n1 = 〈−2, 3, 7〉 and n2 = 〈1, 2,−3〉 .

Suppose L be the line of intersection. The vector v parallel to L is given by

v = n1 × n2

=

∣∣∣∣∣∣∣∣
i j k

−2 3 7

1 2 −3

∣∣∣∣∣∣∣∣
= (−9− 14)i− (6− 7)j + (−4− 3)k

= −23i + j− 7k.

Let (x0, y0, z0) be a point on L. Then (x0, y0, z0) lies on both planes, so that

−2x0 + 3y0 + 7z0 + 2 = 0

x0 + 2y0 − 3z0 + 5 = 0
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These are two equations in three variables. To solve, we find a value of one variable by

identifying the nature of the line. Since the line is parallel to v = 〈−23, 1,−7〉 and since

v · k = 〈−23, 1,−7〉 · 〈0, 0, 1〉 = −7 6= 0

the line is not perpendicular to the z−axis, so that it is not parallel to the xy-plane.

Hence the line L intersect the xy-plane. In other words, we can set

z0 = 0

which gives

−2x0 + 3y0 = −2

x0 + 2y0 = −5.

Solving these we get x0 = −11
7
, y0 = −12

7
. Hence(
−11

7
,−12

7
, 0

)
is a point on L. Thus the parametric equations of the line are

x = −11

7
− 23t, y = −12

7
+ t, z = 0− 7t = −7t.

(note that you can see that L intersect xz and yz planes too.)

(b) and (c) are left as exercise.

Jeeja A. V. jeejamath@gmail.com



94

Problem 4.8

Find an equation of the plane that satisfies the stated conditions.

1. The plane through the origin that is parallel to the plane 4x−2y+7z+12 = 0.

2. The plane that contains the line x = −2 + 3t, y = 4 + 2t, z = 3 − t and is

perpendicular to the plane x− 2y + z = 5.

3. The plane through the point (−1, 4, 2) that contains the line of intersection

of the planes 4x− y + z − 2 = 0 and 2x+ y − 2z − 3 = 0.

4. The plane through (−1, 4,−3) that is perpendicular to the line x− 2 = t, y+

3 = 2t, z = −t.

5. The plane through (1, 2,−1) that is perpendicular to the line of intersection

of the planes 2x+ y + z = 2 and x+ 2y + z = 3.

6. The plane through the points P1(−2, 1, 4), P2(1, 0, 3) that is perpendicular to

the plane 4x− y + 3z = 2.

7. The plane through (−1, 2,−5) that is perpendicular to the planes 2x−y+z = 1

and x+ y − 2z = 3.

8. The plane that contains the point (2, 0, 3) and the line x = −1 + t, y = t, z =

−4 + 2t.

9. The plane whose points are equidistant from (2,−1, 1) and (3, 1, 5).

10. The plane that contains the line x = 3t, y = 1 + t, z = 2t and is parallel to

the intersection of the planes y + z = −1 and 2x− y + z = 0.

Solution. 1. Let P be the required plane. The vector n = 〈4,−2, 7〉 is a normal to

the given plane. Since the P is parallel to the given plane,

n = 〈4,−2, 7〉

is a normal vector to P . Since it passes through the origin, equation of the plane P

is

4(x− 0) + (−2)(y − 0) + 7(z − 0) = 0⇒ 4x− 2y + 7z = 0.

2. Let P be the required plane. Since it contains the line x = −2+3t, y = 4+2t, z = 3−t
and the line passes through P0(−2, 4, 3), it is a point on P .

The line is parallel to the vector v = 〈3, 2,−1〉 and the given plane is perpendicular

to the vector u = 〈1,−2, 1〉. Hence the plane P is parallel to the vectors v,u. Thus
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a normal to the plane P is given by

n = v × u = 〈0,−4,−8〉 . (calculations left as exercise)

Hence the equation of P is

0(x− (−2)) + (−4)(y − 4) + (−8)(z − 3) = 0

⇒ −4y − 8z + 40 = 0

⇒ y + 2z = 10.

3. Let P be the required plane. Suppose L be the line of intersection of the planes

4x− y + z − 2 = 0 and 2x+ y − 2z − 3 = 0.

Given that P1(−1, 4, 2) is a point on the plane. We find a normal n to P . For

determining normal we first find two points on the line L and so on P by solving

the equations of the given planes. We have

4x− y + z − 2 = 0

2x+ y − 2z − 3 = 0

Adding these two we get

6x− z = 5

which is a line on xz-plane. When x = 0, we get z = −5 and when z = 1, we get

6x = 6⇒ x = 1. Hence

(x, z) = (0,−5), (1, 1)

are points on this line.

When (x, z) = (0,−5), from the equation of second plane we have

0 + y + 10− 3 = 0⇒ y = −7

and when (x, z) = (1, 1), again from the equation of second plane we have

2 + y − 2− 3 = 0⇒ y = 3.

Hence

P2(0,−7,−5) and P3(1, 3, 1)

are points on L and hence on P . Thus,

P1(−1, 4, 2), P2(0,−7,−5), P3(1, 3, 1)

are points on P . Then
−−→
P1P2 = 〈1,−11,−7〉 and

−−→
P1P3 = 〈2,−1,−1〉 are parallel to

P so that

n =
−−→
P1P2 ×

−−→
P1P3 = 〈4,−13, 21〉
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is normal to P . Hence an equation of P is

4(x+ 1)− 13(y − 4) + 21(z − 2) = 0⇒ 4x− 12y + 21z = −14.

(Here we use P1 as a point on P ).

4. Let P be the required plane. The given line is parallel to the vector n = 〈1, 2,−1〉.
Since P is perpendicular to the given line, n is a normal to P . Also P contains the

point (−1, 4,−3). Hence equation of P is

1(x− (−1)) + 2(y − 4) + (−1)(z − (−3)) = 0⇒ x+ 2y − z + 1− 8− 3 = 0.

That is

x+ 2y − z = 10.

5. Let P be the required plane. Let L be the line of intersection of the planes 2x+y+z =

2 and x+ 2y + z = 3. Since these planes are perpendicular to

n1 = 〈2, 1, 1〉 , and n2 = 〈1, 2, 1〉 ,

the line L is perpendicular to the vector

n = n1 × n2 = 〈−1,−1, 3〉 .

Hence n = 〈−1,−1, 3〉 is a normal to P and since P passes through (1, 2,−1), an

equation P is

−(x− 1)− (y − 2) + 3(z + 1) = 0⇒ −x− y + 3z + 6 = 0,

that is

x+ y − 3z = 6.

6. Let P be the required plane. Since P is perpendicular to the plane 4x− y+ 3z = 2,

the normal u = 〈4,−1, 3〉 of this plane is parallel to P . Moreover

v =
−−→
P1P2 = 〈3,−1,−1〉

is also parallel to P , since P1, P2 are points on P . Hence a normal to P is

n = u× v = 〈4, 13,−1〉 .

Also P1(−2, 1, 4) is a point on P . So an equation of P is given by

4(x+ 2) + 13(y − 1)− (z − 4) = 0⇒ 4x+ 13y − z = 1
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7. Let P be the required plane. Then (−1, 2,−5) is a point on P . Clearly −→n 1 =

〈2,−1, 1〉 and −→n 2 = 〈1, 1,−2〉 are normals to the planes 2x − y + z = 1 and

x+ y− 2z = 3. Since P is perpendicular to these planes −→n 1 and −→n 2 are parallel to

P . Hence a normal to P is given by

n = −→n 1 ×−→n 2 = 〈1, 5, 3〉 .

Hence an equation to P is given by

(x+ 1) + 5(y − 2) + 3(z + 5) = 0⇒ x+ 5y + 3z = −6.

8. Let P be the required plane. So P1(2, 0, 3) is a point on P . Since the given line is

parallel to u = 〈1, 1, 2〉, and since P contains this line, u is parallel to P also.

Clearly P2(−1, 0,−4) is on the line and so is on P . Hence

v =
−−→
P1P2 = 〈−3, 0,−7〉

is also parallel to P . Hence a normal to P is given by

n = u× v = 〈−7, 1, 3〉

so that an equation of P is given by

−7(x− 2) + (y − 0) + 3(z − 3) = 0⇒ −7x+ y + 3z + 5 = 0

that is

7x− y − 3z = 5.

9. Let P be the required plane. Since the points of P are equidistant from P1(2,−1, 1)

and P2(3, 1, 5), the midpoint of the segment P1P2 is a point on P . That is(
5

2
, 0, 3

)

is a point on P . (midpoint of P1P2 is given by
P1 + P2

2
)

Also n =
−−→
P1P2 = 〈1, 2, 4〉 is normal to P . Hence an equation of P is given by

1

(
x− 5

2

)
+ 2(y − 0) + 4(z − 3) = 0⇒ x+ 2y + 4z − 29

2
= 0

that is

2x+ 4y + 8z = 29.

10. Let P be the required plane and let L be the given line. Clearly (0, 1, 0) is a point

on L, so that it is a point on P too. Now we need a normal to P .
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Note that u = 〈3, 1, 2〉 is parallel to L and so parallel to P . Now

n1 = 〈0, 1, 1〉 and n2 = 〈2,−1, 1〉

are normals to the given planes y+z = −1 and 2x−y+z = 0, so each is perpendicular

to the line L′ of intersection of these planes. Hence

v = n1 × n2 = 〈2, 2,−2〉

is parallel to L′. Since P is parallel to L′ too, it is parallel to v also.

Thus normal to P is given by

n = u× v = 〈−6, 10, 4〉 .

Hence an equation to P is

−6(x− 0) + 10(y − 1) + 4(z − 0) = 0⇒ −6x+ 10y + 4z − 10 = 0,

that is

−3x+ 5y + 2z = 5.

Problem 4.9

1. Find parametric equations of the line through the point (5, 0,−2) that is

parallel to the planes x− 4y + 2z = 0 and 2x+ 3y − z + 1 = 0.

2. Let L be the line x = 3t+ 1, y = −5t, z = t.

(a) Show that L lies in the plane 2x+ y − z = 2.

(b) Show that L is parallel to the plane x + y + 2z = 0. Is the line above,

below, or on this plane?

3. Show that the lines

L1 : x = −2 + t, y = 3 + 2t, z = 4− t

L2 : x = 3− t, y = 4− 2t, z = t

are parallel and find an equation of the plane they determine.

4. Show that the lines

L1 : x+ 1 = 4t, y − 3 = t, z − 1 = 0

L2 : x+ 13 = 12t, y − 1 = 6t, z − 2 = 3t

intersect and find an equation of the plane they determine.
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Solution. 1. Let L be the required line. Then (5, 0,−2) is a point on it. The vectors

n1 = 〈1,−4, 2〉 and n2 = 〈2, 3,−1〉

are normals to the given planes. Since L is parallel to these planes, n1 and n2 are

perpendicular to L. So

v = n1 × n2 = 〈−2, 5, 11〉

is parallel to L. Thus parametric equations of L are

x = 5− 2t, y = 5t, z = −2 + 11t.

2. (a) It is clear that L lies in the given plane, since,

2(3t+ 1)− 5t− t = 2.

(b) First part is left as exercise.

Second part. Consider the equation x+y+2z = 0 of the plane and the equation

x = 3t+ 1, y = −5t, z = t of L. Then

(3t+ 1) + (−5t) + 2t = 1

so that the line L lies on the plane x + y + 2z = 1, which is parallel to

x+y+2z = 0 and lies above it. Hence the L lies above the plane x+y+2z = 0.

3. Clearly the vectors

v1 = 〈1, 2,−1〉 and v2 = 〈−1,−2, 1〉

are parallel to L1 and L2 respectively. Since v1 = −v2, the lines are parallel.

Let P be the plane determined by the lines L1 and L2. Then P1(−2, 3, 4) and

P2(3, 4, 0) are points on P (since they are points on L1 and L2 respectively). Hence

P is parallel to the vector

u =
−−→
P1P2 = 〈5, 1,−4〉 .

Moreover v1 is also parallel to P so that,

n = v1 × u = 〈−7,−1,−9〉

is a normal to P . Hence equation to P is

−7(x+ 2)− (y − 3)− 9(z − 4) = 0⇒ −7x− y − 9z + 25 = 0,

that is

7x+ y + 9z = 25.

(by choosing P1 as a point on P ).
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4. Left as exercise.

Hint: Choose the point of intersection as point on the plane and use the vectors

parallel to the given lines to determine normal.

DISTANCE PROBLEMS INVOLVING PLANES

Next we will consider three basic distance problems in 3-space:

I Find the distance between a point and a plane.

I Find the distance between two parallel planes.

I Find the distance between two skew lines.

Figure 4.4

I The three problems are related. If we can find the distance between a point and a

plane, then we can find the distance between parallel planes by computing the distance

between one of the planes and an arbitrary point P0 in the other plane.

I Moreover, we can find the distance between two skew lines by computing the distance

between parallel planes containing them.

Theorem4.2

The distance D between a point P0(x0, y0, z0) and the plane ax+ by+ cz+ d = 0 is

D =
|ax0 + by0 + cz0 + d|√

a2 + b2 + c2
(37)

Proof.
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Let Q(x1, y1, z1) be any point in the plane, and posi-

tion the normal n = 〈a, b, c〉 so that its initial point

is at Q. From the figure it is clear that the distance

D is equal to the length of the orthogonal projection

of
−−→
QP0 on n.

Thus

D =
∥∥∥projn

−−→
QP0

∥∥∥ =

∥∥∥∥∥
(−−→
QP0 · n
‖n‖2

)
n

∥∥∥∥∥ =
|
−−→
QP0 · n|
‖n‖2

‖n‖ =
|
−−→
QP0 · n|
‖n‖

.

But

−−→
QP0 = 〈x0 − x1, y0 − y1, z0 − z1〉

⇒
−−→
QP0 · n = 〈x0 − x1, y0 − y1, z0 − z1〉 · 〈a, b, c〉

= a(x0 − x1) + b(y0 − y1) + c(z0 − z1)

= (ax0 + by0 + cz0)− (ax1 + by1 + cz1)

Since (x1, y1, z1) is a point on the plane we have

ax1 + by1 + cz1 + d = 0⇒ ax1 + by1 + cz1 = −d

so that
−−→
QP0 · n = ax0 + by0 + cz0 + d.

Also

‖n‖ =
√
a2 + b2 + c2.

Hence

D =
|ax0 + by0 + cz0 + d|√

a2 + b2 + c2
.

Problem 4.10

Show that a plane P is parallel to a plane ax + by + cz + d = 0 if and only if the

equation of P is ax+ by + cz + d′ = 0 for some real number d′.

Solution. Suppose the equation of P is ax + by + cz + d′ = 0. Then normal to P is

n = 〈a, b, c〉. Also normal to the given plane is 〈a, b, c〉, which shows that the planes are

parallel.

Conversely assume that P is a plane parallel to ax+by+cz+d = 0. Suppose equation

of P is

a1x+ b1y + c1z + d1 = 0.
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The normal to P is

n1 = 〈a1, b1, c1〉 .

Since P is parallel to the plane ax+by+cz+d = 0, the vector n1 is parallel to the normal

n = 〈a, b, c〉 so that n1 is a multiple of n. Which shows that

〈a1, b1, c1〉 = k 〈a, b, c〉

for some k 6= 0 so that

a1 = ka, b1 = kb, c1 = kc.

Hence equation of P becomes

kax+ kby + kcz + d1 = 0

⇒ k(ax+ by + cz) + d1 = 0

⇒ ax+ by + cz +
d1
k

= 0

⇒ ax+ by + cz + d′ = 0

where d′ = d1
k

.

Problem 4.11

Show that the distance D between parallel planes

ax+ by + cz + d1 = 0

ax+ by + cz + d2 = 0

is
|d1 − d2|√
a2 + b2 + c2

. (38)

Solution. Let P1, P2 be the planes ax+by+cz+d1 = 0, ax+by+cz+d2 = 0 respectively.

Since the planes are parallel, the distance between them is same as the distance of P1

from a point of P2.

Choose a point (x0, y0, z0) on P2, then

ax0 + by0 + cz0 + d2 = 0⇒ ax0 + by0 + cz0 = −d2

and D is same as the distance of (x0, y0, z0) from P1, which is ax+ by + cz + d1 = 0. By

(37),

D =
|ax0 + by0 + cz0 + d1|√

a2 + b2 + c2
=
| − d2 + d1|√
a2 + b2 + c2

=
|d1 − d2|√
a2 + b2 + c2

.
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Problem 4.12

1. Find the distance between the point and the plane.

(a) (1,−2, 3); 2x− 2y + z = 4

(b) (0, 1, 5); 3x+ 6y − 2z − 5 = 0

2. Find the distance between the given parallel planes.

(a) −2x+ y + z = 0, 6x− 3y − 3z − 5 = 0

(b) x+ y + z = 1, x+ y + z = −1

Solution. 1. (a) Equation of the given plane is

2x− 2y + z − 4 = 0.

Hence distance of (1,−2, 3) from the plane is

d =
|2× 1− 2× (−2) + 3− 4|√

22 + (−2)2 + 12
=

5

3
.

(b) Left as exercise.

2. (a) The given planes are

−2x+ y + z = 0, 6x− 3y − 3z − 5 = 0.

Rewriting the equation of second plane (divide by −3), we get

−2x+ y + z = 0, −2x+ y + z +
5

3
= 0

so that the planes are parallel. Here d1 = 0, d3 = 5
3

and a = −2, b = 1, c = 1.

Hence distance between the planes is

D =
|d1 − d2|√
a2 + b2 + c2

=
|0− 5

3
|√

(−2)2 + 12 + 12
=

5

3
√

6
.

(b) Left as exercise.

Problem 4.13

Show that the lines

L1 : x = 1 + 4t, y = 5− 4t, z = −1 + 5t

L2 : x = 2 + 8t, y = 4− 3t, z = 5 + t

are skew and find the distance between them.
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Solution. From problem 3.8, it is clear that the lines are skew.

As illustrated in figure 37, distance between L1 and L2 is same as the distance between

the parallel planes containing them.

Method: Let P1 and P2 denote parallel planes containing L1 and L2, respectively. To find

the distance D between L1 and L2, we will calculate the distance from a point in P1 to

the plane P2. For this, we find a point on L1 so that it is on P1 and find the equation of

P2.

Substituting t = 0, we get

Q1(1, 5,−1), Q2(2, 4, 5)

as points on L1 and L2 respectively, that is on P1 and P2

respectively. Now we determine normal to P2. Note that

the vectors u1 = 〈4,−4, 5〉 and u2 = 〈8,−3, 1〉 are parallel

to L1 and L2 respectively and hence parallel to P1 and

P2 respectively. Since P1 and P2 are parallel planes, u1

and u2 are parallel to P2. Hence a normal n to P2 will be

perpendicular to both u1 and u2, so that we choose

n = u1 × u2

=

∣∣∣∣∣∣∣∣
i j k

4 −4 5

8 −3 1

∣∣∣∣∣∣∣∣
= 11i + 36j + 20k.

Since Q2(2, 4, 5) is a point on P2, an equation of P2 is given by

11(x− 2) + 36(y − 4) + 20(z − 5) = 0⇒ 11x+ 36y + 20z − 22− 144− 100 = 0

or

11x+ 36y + 20z − 266 = 0.

Hence distance between P1 and P2, which is same as distance between Q1(1, 5,−1) and

P2 is given by

D =
|11× 1 + 36× 5 + 20× (−1)− 266|√

112 + 362 + 202
=

95√
1817

.

Thus distance between the lines L1 and L2 is also equal to
95√
1817

.
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Problem 4.14

In each problem, show that the lines are skew and find the distance between them.

(a) L1 : x = 1 + 7t, y = 3 + t, z = 5− 3t

L2 : x = 4− t, y = 6, z = 7 + 2t

(b) L1 : x = 3− t, y = 4 + 4t, z = 1 + 2t

L2 : x = t, y = 3, z = 2t

Solution. (a) Showing that the lines are skew is left as exercise. Let P1 and P2 denote

parallel planes containing L1 and L2, respectively. Here we determine the distance between

P1 and a point on P2.

Put t = 0 in L1 and L2, we get

Q1(1, 3, 5), Q2(4, 6, 7)

as points on L1 and L2, that is, on P1 and P2 respectively.

Since u1 = 〈7, 1,−3〉 and u2 = 〈−1, 0, 2〉 are parallel to P1, normal to P1 is given by

n = u1 × u2

=

∣∣∣∣∣∣∣∣
i j k

7 1 −3

−1 0 2

∣∣∣∣∣∣∣∣
= 2i− 11j + k.

Since P1 passes through Q1(1, 3, 5), an equation to P1 is

2(x− 1)− 11(y − 3) + 1(z − 5) = 0⇒ 2x− 11y + z + 26 = 0.

Hence distance between P1 and P2, which is same as distance between Q2(4, 6, 7) and P1

is given by

D =
|2× 4− 11× 6 + 7 + 26|√

22 + (−11)2 + 12
=

25√
126

.

Thus distance between the lines L1 and L2 is also equal to
25√
126

.

(b) Left as exercise.
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Problem 4.15

(a) Find an equation of the sphere with center C(2, 1,−3) that is tangent to the

plane P : x− 3y + 2z = 4.

(b) Locate the point of intersection of the plane P : 2x+ y − z = 0 and the line

through C(3, 1, 0) that is perpendicular to the plane.

(c) Show that the line x = −1+t, y = 3+2t, z = −t and the plane 2x−2y−2z+3 =

0 are parallel, and find the distance between them.

Solution. (a) Left as exercise. (Hint: Radius of the sphere is same as the distance

between C and P .)

(b) Left as exercise. (Hint: Vector parallel to the line is same as the vector normal to the

plane P . (why?))

(c) Left as exercise.
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5 QUADRIC SURFACES

These are important class of surfaces that are the three-dimensional analogs of the conic

sections.

TRACES OF SURFACES

Although the general shape of a curve in 2-space can be obtained by plotting points, this

method is not usually helpful for surfaces in 3-space because too many points are required.

It is more common to build up the shape of a surface with a network of mesh lines,

which are curves obtained by cutting the surface with well-chosen planes. For example,

the figure below was generated by a CAS (Computer Algebra System), shows the graph

of z = x3 − 3xy2 rendered with a combination of mesh lines and colorization to produce

the surface detail. This surface is called a “monkey saddle” because a monkey sitting

astride the surface has a place for its two legs and tail.

The mesh line that results when a surface is cut by a plane is called the trace of the

surface in the plane.

Figure 5.1

A monkey saddle

For example, consider the surface

z = x2 + y2 (39)

To find its trace in the plane z = k, we substitute this value of z into (39), which yields
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x2 + y2 = k (z = k) (40)

I If k < 0, this equation has no real solutions, so there is no trace.

I However, if k ≥ 0, then the graph of (40) is a circle of radius
√
k centered at the

point (0, 0, k) on the z-axis. (see Figure 5.2)

Thus, for nonnegative values of k the traces parallel to the xy-plane form a family of

circles, centered on the z-axis, whose radii start at zero and increase with k.

Figure 5.2

Now we examine the traces of (39) in planes parallel to the yz- plane. Such planes

have equations of the form x = k, so we substitute this in (39) to obtain

z = y2 + k2 (x = k) (41)

I When k = 0 (41) becomes z = y2, which is a parabola in the plane x = 0 (yz-plane)

that has its vertex at the origin, opens in the positive z-direction, and is symmetric

about the z-axis. (the blue parabola in Figure 5.3 a).

I For k > 0 the trace can be drawn as follows

/ We know that the graph of z = y2 + k2 is obtained by translating the parabola

z = y2, k2 units in the positive direction of z-axis.

/ Since (41) is obtained when x = k, we draw the graph on the plane x = k,

which is on the positive x-axis.
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/ Hence we get the parabola as in the case of z = y2, but the new vertex will be

at (k, 0, k2).

This is the red parabola in Figure 5.3 a.

I For k < 0 also we get the same parabola in the case of k > 0, but here in the

negative x-axis.

Thus, the traces in planes parallel to the yz-plane form a family of parabolas whose

vertices move upward as k2 increases (see Figure 5.3 b).

Similarly, the traces in planes parallel to the xz-plane have equations of the form

z = x2 + k2 (y = k)

which again is a family of parabolas whose vertices move upward as k2 increases Fig-

ure 5.3 c.

Figure 5.3

THE QUADRIC SURFACES

We have noted that a second-degree equation

Ax2 +Bxy + Cy2 +Dx+ Ey + F = 0

represents a conic section. The analog of this equation in an xyz coordinate system is

Ax2 +By2 + Cz2 +Dxy + Exz + Fyz +Gx+Hy + Iz + J = 0 (42)
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which is called a second-degree equation in x, y, and z. The graphs of such equations

are called quadric surfaces or sometimes quadrics.

Six common types of quadric surfaces are shown below - ellipsoids, hyperboloids of

one sheet, hyperboloids of two sheets, elliptic cones, elliptic paraboloids, and hyperbolic

paraboloids. (The constants a, b, and c that appear in the equations in the table are

assumed to be positive.)
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surface equation surface equation

ellipsoid

x2

a2
+ y2

b2
+ z2

c2
= 1

The traces in the

coordinate planes are

ellipses, as are the

traces in those planes

that are parallel to the

coordinate planes and

intersect the surface in

more than one point.

elliptic cone

z2 = x2

a2
+ y2

b2

The trace in the

xy-plane is a point (the

origin), and the traces

in planes parallel to the

xy-plane are ellipses.

The traces in the yz

and xz-planes are pairs

of lines intersecting at

the origin. The traces in

planes parallel to these

are hyperbolas.

hyperboloid
of one sheet

x2

a2
+ y2

b2
− z2

c2
= 1

The trace in the

xy-plane is an ellipse, as

are the traces in planes

parallel to the xy-

plane. The traces in the

yz-plane and xz-plane

are hyperbolas, as are

the traces in those

planes that are parallel

to these and do not pass

through the x- or

y-intercepts. At these

intercepts the traces are

pairs of intersecting

lines.

elliptic paraboloid

z = x2

a2
+ y2

b2

The trace in the

xy-plane is a point (the

origin), and the traces

in planes parallel to and

above the xy-plane are

ellipses. The traces in

the yz- and xz-planes

are parabolas, as are the

traces in planes parallel

to these.

hyperboloid
of two sheets

z2

c2
− x2

a2
− y2

b2
= 1

There is no trace in the

xy-plane. In planes

parallel to the xy-plane

that intersect the

surface in more than

one point the traces are

ellipses. In the yz- and

xz-planes, the traces are

hyperbolas, as are the

traces in those planes

that are parallel to

these.

hyperbolic paraboloid

z = y2

b2
− x2

a2

The trace in the

xy-plane is a pair of

lines intersecting at the

origin. The traces in

planes parallel to the

xy-plane are hyperbolas.

The hyperbolas above

the xy-plane open in the

y-direction, and those

below in the x-direction.

The traces in the yz-

and xz-planes are

parabolas, as are the

traces in planes parallel

to these.
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TECHNIQUES FOR GRAPHING QUADRIC SURFACES

A rough sketch of an ellipsoid

x2

a2
+
y2

b2
+
z2

c2
= 1 (a > 0, b > 0, c > 0)

can be obtained by first plotting the intersections with the coordinate axes, and then

sketching the elliptical traces in the coordinate planes.

Problem 5.1

Sketch the ellipsoid
x2

4
+
y2

16
+
z2

9
= 1

Solution. We first find the intercepts on coordinate axes. When y = z = 0, we have

x2 = 4⇒ x = ±2. Hence x-intercepts are (2, 0, 0) and (−2, 0, 0). Similarly we get the y-

intercepts (0,±4, 0) and z-intercepts (0, 0,±3).

Now we find traces in coordinate planes. In xy plane, we have z = 0 so that we get

the ellipse x2

4
+ y2

16
= 1. Similarly trace by xz-plane is the ellipse x2

4
+ z2

9
= 1 and trace by

the yz-plane is the ellipse y2

16
+ z2

9
= 1.

Figure 5.4
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Problem 5.2

Identify and sketch the surface

6x2 + 3y2 + 4z2 = 12

Solution. The given equation can be rewritten as

x2

2
+
y2

4
+
z2

3
= 1,

and the equation represents an ellipsoid. We first find the intercepts on coordinate axes.

When y = z = 0, we have x2 = 2 ⇒ x = ±
√

2. Hence x-intercepts are (
√

2, 0, 0) and

(−
√

2, 0, 0). Similarly we get the y-intercepts (0,±2, 0) and z-intercepts (0, 0,±
√

3).

Now we find traces in coordinate planes. In xy plane, we have z = 0 so that we get

the ellipse x2

2
+ y2

4
= 1. Similarly trace by xz-plane is the ellipse x2

2
+ z2

3
= 1 and trace by

the yz-plane is the ellipse y2

4
+ z2

3
= 1.

Figure 5.5

A rough sketch of a hyperboloid of one sheet

x2

a2
+
y2

b2
− z2

c2
= 1 (a > 0, b > 0, c > 0)
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can be obtained by first sketching the elliptical trace in the xy-plane, then the elliptical

traces in the planes z = ±c, and then the hyperbolic curves that join the endpoints of

the axes of these ellipses.

Problem 5.3

Sketch the graph of the hyperboloid of one sheet

x2 + y2 − z2

4
= 1

Solution. The trace in the xy-plane, obtained by setting z = 0, is

x2 + y2 = 1 (z = 0)

which is a circle of radius 1 centered on the z-axis (origin). The traces in the planes z = 2

and z = −2, obtained by setting z = ±2, are given by

x2 + y2 = 2 (z = ±2)

which are circles of radius
√

2 centered on the z-axis. Joining these circles by the hyper-

bolic traces in the vertical coordinate planes yields the graph.

Figure 5.6
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Problem 5.4

Sketch the graph of the hyperboloid of one sheet

x2

4
+
y2

9
− z2

16
= 1

Solution. The trace in the xy-plane, obtained by setting z = 0, is

x2

4
+
y2

9
= 1 (z = 0)

which is an ellipse centered on the z-axis (origin) and having major axis along y-axis

(a = 3, b = 2). The traces in the planes z = 4 and z = −4, obtained by setting z = ±4,

are given by
x2

8
+
y2

18
= 1 (z = ±4)

which are ellipses centered on the z-axis with major axis along y-axis and a = 3
√

2 ≈
4.24, b = 2

√
2 ≈ 2.83. Joining these ellipses by the hyperbolic traces in the vertical

coordinate planes yields the graph.

Figure 5.7

A rough sketch of the hyperboloid of two sheets

z2

c2
− x2

a2
− y2

b2
= 1 (a > 0, b > 0, c > 0)

can be obtained by first plotting the intersections with the z-axis, then sketching the

elliptical traces in the planes z = ±2c, and then sketching the hyperbolic traces that

connect the z-axis intersections and the endpoints of the axes of the ellipses. (It is not
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essential to use the planes z = ±2c, but these are good choices since they simplify the

calculations slightly and have the right spacing for a good sketch.)

Problem 5.5

Sketch the graph of the hyperboloid of two sheets

z2 − x2 − y2

4
= 1.

Solution. When x = y = 0 we get z2 = 1⇒ z = ±1, so that the surface intersect the z

axis at (0, 0, 1) and (0, 0,−1). Setting z = ±2, we get

4− x2 − y2

4
= 1⇒ x2 +

y2

4
= 3⇒ x2

3
+
y2

12
= 1.

That is the traces in the planes z = 2 and z = −2, obtained by

x2

3
+
y2

12
= 1 (z = ±2),

these are ellipses with centre on the planes z = ±2, and major axis parallel to y-axis and

a =
√

12 ≈ 3.46, b =
√

3 =≈ 1.73. Sketching these ellipses and the hyperbolic traces in

the vertical coordinate planes yields,

Figure 5.8

Problem 5.6

Identify and sketch the surface

9z2 − 4y2 − 9x2 = 36
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Solution. The given equation can be written as

z2

4
− y2

9
− x2

4
= 1.

The surface is a hyperboloid of two sheets. When x = y = 0 we get z2 = 4⇒ z = ±2, so

that the surface intersect the z axis at (0, 0, 2) and (0, 0,−2). Setting z = ±4, we get

4− y2

9
− x2

4
= 1⇒ x2

4
+
y2

9
= 3⇒ x2

12
+
y2

27
= 1.

That is the traces in the planes z = 4 and z = −4, obtained by

x2

12
+
y2

27
= 1 (z = ±4),

these are ellipses with centre on the planes z = ±4, and major axis parallel to y-axis and

a =
√

27 ≈ 5.2, b =
√

12 =≈ 3.46. Sketching these ellipses and the hyperbolic traces in

the vertical coordinate planes yields,

Figure 5.9

A rough sketch of the elliptic cone

z2 =
x2

a2
+
y2

b2
(a > 0, b > 0)

can be obtained by first sketching the elliptical traces in the planes z = ±1 and then

sketching the linear traces that connect the endpoints of the axes of the ellipses.

Problem 5.7

Sketch the graph of the elliptic cone

z2 = x2 +
y2

4
.
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Solution. When z = ±1, we get

x2 +
y2

4
= 1, (z = ±1)

are ellipses with centres on the planes z = ±1 and major axis parallel to y-axis and

a = 2, b = 1. Sketching these ellipses and the linear traces in the vertical coordinate

planes yields the graph

Figure 5.10

Problem 5.8

Identify and sketch the surface

9x2 + 4y2 − 36z2 = 0.

Solution. The given equation can be written as

z2 =
x2

4
+
y2

9

which is an elliptic cone. When z = ±1, we get

x2

4
+
y2

9
= 1, (z = ±1)

are ellipses with centres on the planes z = ±1 and major axis parallel to y-axis and

a = 3, b = 2. Sketching these ellipses and the linear traces in the vertical coordinate

planes yields the graph
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Figure 5.11

A rough sketch of the elliptic paraboloid

z =
x2

a2
+
y2

b2
(a > 0, b > 0)

can be obtained by first sketching the elliptical trace in the plane z = 1 and then sketching

the parabolic traces in the vertical coordinate planes to connect the origin to the ends of

the axes of the ellipse.

Problem 5.9

Sketch the graph of the elliptic paraboloid

z =
x2

4
+
y2

9
.

Solution. The trace in the plane z = 1 is

x2

4
+
y2

9
= 1, (z = 1)

which is an ellipse with centre on the z-axis, major axis parallel to y-axis and a = 3, b = 2.

Traces in the xz (put y = 0) and yz (put x = 0) planes are

z =
x2

4
and z =

y2

9
.

They represent parabolas (as described in the case of (39)). Thus the graph is
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Figure 5.12

Problem 5.10

Identify and sketch the surface

4z = x2 + 2y2.

Solution. The equation can be written as

z =
x2

4
+
y2

2
.

The trace in the plane z = 1 is

x2

4
+
y2

2
= 1, (z = 1)

which is an ellipse with centre on the z-axis, major axis parallel to x-axis and a = 2, b =
√

2.

Traces in the xz (put y = 0) and yz (put x = 0) planes are

z =
x2

4
and z =

y2

2
.

They represent parabolas (as described in the case of (39)). Thus the graph is
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Figure 5.13

A rough sketch of the hyperbolic paraboloid

z =
y2

b2
− x2

a2
(a > 0, b > 0)

can be obtained by first sketching the two parabolic traces that pass through the origin

(one in the plane x = 0 and the other in the plane y = 0). After the parabolic traces

are drawn, sketch the hyperbolic traces in the planes z = ±1 and then fill in any missing

edges.

Problem 5.11

Sketch the graph of the hyperbolic paraboloid

z =
y2

4
− x2

9
.

Solution. Setting x = 0 we get

z =
y2

4
(x = 0)

which is a parabola in the yz-plane with vertex at the origin and opening in the positive

z-direction (since z ≥ 0), and setting y = 0 yields

z = −x
2

9
(y = 0)

which is a parabola in the xz-plane with vertex at the origin and opening in the negative

z-direction. The trace in the plane z = 1 is

y2

4
− x2

9
= 1 (z = 1)
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which is a hyperbola that opens along a line parallel to the y-axis, and the trace in the

plane z = −1 is
x2

9
− y2

4
= 1 (z = −1)

which is a hyperbola that opens along a line parallel to the x-axis. Combining all of the

above information leads to the sketch

Figure 5.14

I The hyperbolic paraboloid in Figure 5.14 has an interesting behaviour at the origin

-the trace in the xz-plane has a relative maximum at (0, 0, 0), and the trace in the yz-

plane has a relative minimum at (0, 0, 0). Thus, a bug walking on the surface may view

the origin as a highest point if travelling along one path, or may view the origin as a

lowest point if travelling along a different path. A point with this property is commonly

called a saddle point or a minimax point.

TRANSLATIONS OF QUADRIC SURFACES

We saw that a conic in an xy-coordinate system can be translated by substituting x− h
for x and y− k for y in its equation. To understand why this works, think of the xy-axes
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as fixed and think of the plane as a transparent sheet of plastic on which all graphs are

drawn. When the coordinates of points are modified by substituting (x − h, y − k) for

(x, y), the geometric effect is to translate the sheet of plastic (and hence all curves) so

that the point on the plastic that was initially at (0, 0) is moved to the point (h, k) (see

first of Figure 5.15).

For the analog in three dimensions, think of the xyz-axes as fixed and think of 3-space

as a transparent block of plastic in which all surfaces are embedded. When the coordinates

of points are modified by substituting (x−h, y−k, z− l) for (x, y, z), the geometric effect

is to translate the block of plastic (and hence all surfaces) so that the point in the plastic

block that was initially at (0, 0, 0) is moved to the point (h, k, l).

Figure 5.15

Problem 5.12

Describe the surface

z = (x− 1)2 + (y + 2)2 + 3.

Solution. The equation can be rewritten as

z − 3 = (x− 1)2 + (y + 2)2.

This surface is the paraboloid that results by translating the paraboloid

z = x2 + y2

so that the new “vertex” is at the point (1,−2, 3). A rough sketch is
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Figure 5.16

Problem 5.13

Describe the surface

4x2 + 4y2 + z2 + 8y − 4z = −4.

Solution. Completing the squares we get

4x2 + 4(y2 + 2y + 1) + (z2 − 4z + 4) = −4 + 4 + 4

⇒ 4x2 + 4(y + 1)2 + (z − 2)2 = 4

⇒ x2 + (y + 1)2 +
(z − 2)2

4
= 1.

Thus, the surface is the ellipsoid that results when the ellipsoid

x2 + y2 +
z2

4
= 1

is translated so that the new “center” is at the point (0,−1, 2). A rough sketch of this

ellipsoid is
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Figure 5.17

REFLECTIONS OF SURFACES IN 3-SPACE

Recall that in an xy-coordinate system a point (x, y) is reflected about the x-axis if y is

replaced by −y, and it is reflected about the y-axis if x is replaced by −x. In an xyz

coordinate system, a point (x, y, z) is reflected about the xy-plane if z is replaced by −z,

it is reflected about the yz-plane if x is replaced by −x, and it is reflected about the

xz-plane if y is replaced by −y (first of Figure 5.18). It follows that replacing a variable

by its negative in the equation of a surface causes that surface to be reflected about a

coordinate plane.

Recall also that in an xy-coordinate system a point (x, y) is reflected about the line

y = x if x and y are interchanged. However, in an xyz-coordinate system, interchanging x

and y reflects the point (x, y, z) about the plane y = x (second of Figure 5.18). Similarly,

interchanging x and z reflects the point about the plane x = z, and interchanging y and

z reflects it about the plane y = z. Thus, it follows that interchanging two variables in

the equation of a surface reflects that surface about a plane that makes a 45◦ angle with

two of the coordinate planes.
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Figure 5.18

Problem 5.14

Describe the surfaces

(a) y2 = x2 + z2 (b) z = −(x2 + y2)

Solution. (a) The graph of the equation

y2 = x2 + z2

results from interchanging y and z in the equation

z2 = x2 + y2.

Thus, the graph of the equation y2 = x2 + z2 can be obtained by reflecting the graph

of z2 = x2 + y2 about the plane y = z. Since the graph of z2 = x2 + y2 is a circular

cone opening along the z-axis, it follows that the graph of y2 = x2 + z2 is a circular cone

opening along the y-axis.

(b) The graph of the equation

z = −(x2 + y2)

can be written as

−z = x2 + y2,

which can be obtained by replacing z with −z in the equation z = x2+y2. Since the graph

of z = x2 + y2 is a circular paraboloid opening in the positive z-direction it follows that

the graph of z = −(x2 + y2) is a circular paraboloid opening in the negative z-direction.
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Figure 5.19

The following table summarizes techniques for identifying quadric surfaces.

identifying a quadric surface from the form of its equation

equation characteristic classification

x2

a2
+
y2

b2
+
z2

c2
= 1 No minus signs Ellipsoid

x2

a2
+
y2

b2
− z2

c2
= 1 One minus sign Hyperboloid of one sheet

z2

c2
− x2

a2
− y2

b2
= 1 Two minus signs Hyperboloid of two sheets

z2 − x2

a2
− y2

b2
= 0 No linear terms Elliptic cone

z − x2

a2
− y2

b2
= 0 One linear term; two quadratic

terms with the same sign

Elliptic paraboloid

z − x2

a2
− y2

b2
= 0 One linear term; two quadratic

terms with the opposite sign

Hyperbolic paraboloid
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Problem 5.15

Identify the surfaces

(a) 3x2 − 4y2 + 12z2 + 12 = 0 (b) 4x2 − 4y + z2 = 0

Solution. (a) The equation can be rewritten as

y2

3
− x2

4
− z2 = 1.

This equation has a 1 on the right side and two negative terms on the left side, so its

graph is a hyperboloid of two sheets.

(b) The equation has one linear term and two quadratic terms with the same sign, so its

graph is an elliptic paraboloid.

Problem 5.16

Identify the quadric surface as an ellipsoid, hyperboloid of one sheet, hyperboloid

of two sheets, elliptic cone, elliptic paraboloid, or hyperbolic paraboloid. State the

values of a, b, and c in each case.

1. (a) z = x2

4
+ y2

9

(b) z = y2

25
− x2

(c) x2 + y2 − z2 = 16

(d) x2 + y2 − z2 = 0

(e) 4z = x2 + 4y2

(f) z2 − x2 − y2 = 1

2. (a) 6x2 + 3y2 + 4z2 = 12

(b) y2 − x2 − z = 0

(c) 9x2 + y2 − 9z2 = 9

(d) 4x2 + y2 − 4z2 = −4

(e) 2z − x2 − 4y2 = 0

(f) 12z2 − 3x2 = 4y2

Solution. Comparing with the equations of quadrics and using techniques to identify

them we shall identify the surfaces.

1. (a) Elliptic paraboloid (b) Hyperbolic paraboloid

(c) Hyperboloid of one sheet (d) Elliptic cone (e) Elliptic paraboloid

(f) Hyperboloid of two sheets
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Other problems are left as exercise.

Problem 5.17

Find equations of the traces in the coordinate planes and sketch the traces in an

xyz- coordinate system.

1. (a) x2

9
+ y2

25
+ z2

4
= 1

(b) z = x2 + 4y2

(c) x2

9
+ y2

16
− z2

4
= 1

2. (a) y2 + 9z2 = x

(b) 4x2 − y2 + 4z2 = 4

(c) z2 = x2 + y2

4

Solution. We obtain trace in the xy-plane by substituting z = 0, trace in the xz-plane

by substituting y = 0, and trace in the yz-plane by substituting x = 0.

1. (a) When z = 0 we get, x2

9
+ y2

25
= 1, which is an ellipse in xy-plane.

When y = 0 we get, x2

9
+ z2

4
= 1, which is an ellipse in xz-plane.

When x = 0 we get, y2

25
+ z2

4
= 1, which is an ellipse in yz-plane.

Other problems are left as exercise.

6 CYLINDRICALAND SPHERICALCOORDI-
NATES

We have discussed the rectangular coordinate system in 3-space. Now we discuss two

new types of coordinate systems in 3-space that are often more useful than rectangular

coordinate systems for studying surfaces with symmetries. These new coordinate systems

also have important applications in navigation, astronomy, and the study of rotational

motion about an axis.

In rectangular coordinate system, a point P (x, y, z) can be considered as a point on a

vertex of a rectangular parallelepiped (or rectangular prism).
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Figure 6.1

Consider a point P in the 3-space. Geometrically, P can be visualized as a point on

the surface of a cylinder or a semi sphere. This leads to two new coordinate systems in

3-space namely, cylindrical coordinates and spherical coordinates.

Figure 6.2

The cylindrical coordinates of P are

(r, θ, z)

where z is the intercept of P from the z-axis, r, θ are the plane polar coordinates of the

point at which the perpendicular from P intersect the xy-plane. In order to cover all

points in the 3-space, we must have
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−∞ < z <∞, r ≥ 0, 0 ≤ θ < 2π

The spherical coordinates of P are

(ρ, θ, φ)

where ρ is the distance of P from the origin, θ is the angular coordinate in plane polar

coordinate of the point at which the perpendicular from P intersect the xy- plane and φ

is the angle that the line joining origin and P makes with the positive z-axis. In order to

cover all points in the 3-space, we must have

ρ ≥ 0, 0 ≤ θ < 2π, 0 ≤ φ ≤ π

CONSTANT SURFACES

In rectangular coordinates the surfaces represented by equations of the form

x = x0, y = y0, and z = z0

where x0, y0, and z0 are constants, are planes parallel to the yz-plane, xz- plane, and

xy-plane respectively (Figure 6.3(a)).

In cylindrical coordinates the surfaces represented by equations of the form

r = r0, θ = θ0 , and z = z0

where r0, θ0, and z0 are constants, are shown in Figure 6.3(b).

I The surface r = r0 is a right circular cylinder of radius r0 centered on the

z-axis.

I The surface θ = θ0 is a half-plane attached along the z-axis and making an

angle θ0 with the positive x-axis.

I The surface z = z0 is a horizontal plane.

In spherical coordinates the surfaces represented by equations of the form

ρ = ρ0, θ = θ0, and φ = φ0
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where ρ0, θ0, and φ0 are constants, are shown in Figure 6.3(c).

I The surface ρ = ρ0 consists of all points whose distance ρ from the origin is

ρ0. Assuming ρ0 to be nonnegative, this is a sphere of radius ρ0 centered at

the origin.

I As in cylindrical coordinates, the surface θ = θ0 is a half-plane attached along

the z-axis, making an angle of θ0 with the positive x-axis.

I The surface φ = φ0 consists of all points from which a line segment to the

origin makes an angle of φ0 with the positive z-axis. If 0 < φ0 <
π
2
, this will

be the nappe of a cone opening up, while if π
2
< φ0 < π, this will be the nappe

of a cone opening down. (If φ0 = π
2
, then the cone is flat, and the surface is

the xy-plane.)

Figure 6.3

(a) (b) (c)

CONVERTING COORDINATES

Just as we needed to convert between rectangular and polar coordinates in 2-space, so we

will need to be able to convert between rectangular, cylindrical, and spherical coordinates

in 3-space. Following table provides formulas for making these conversions.
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conversion formulas

Cylindrical to rectangular (r, θ, z)→ (x, y, z) x = r cos θ, y = r sin θ, z = z

Rectangular to cylindrical (x, y, z)→ (r, θ, z) r =
√
x2 + y2, tan θ = y/x, z = z

Spherical to cylindrical (ρ, θ, φ)→ (r, θ, z) r = ρ sinφ, θ = θ, z = ρ cosφ

Cylindrical to spherical (r, θ, z)→ (ρ, θ, φ) ρ =
√
r2 + z2, θ = θ, tanφ = r/z

Spherical to rectangular (ρ, θ, φ)→ (x, y, z) x = ρ sinφ cos θ, y = ρ sinφ sin θ,

z = ρ cosφ

Rectangular to spherical (x, y, z)→ (ρ, θ, φ) ρ =
√
x2 + y2 + z2, tan θ = y/x,

cosφ = z/
√
x2 + y2 + z2

Figure 6.4

Cylindrical to Rectangular

From Figure 6.4(a), it is clear that z = z. Also since (r, θ) are the polar coordinates of

(x, y) we get

x = r cos θ, y = r sin θ, z = z (43)
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Rectangular to Cylindrical

From (44) we get

r =
√
x2 + y2, tan θ =

y

x
, z = z. (44)

Spherical to Cylindrical

In Figure 6.4(b), the right triangle with sides ρ, z, r shows that r = ρ sinφ, z = ρ cosφ.

Hence we get

r = ρ sinφ, θ = θ, z = ρ cosφ. (45)

Cylindrical to Spherical

From (45) we have r2 + z2 = ρ2(sin2 φ+ cos2 φ) = ρ2 and tanφ = r
z
. Hence

ρ =
√
r2 + z2, θ = θ, tanφ =

r

z
. (46)

Spherical to Rectangular

In Figure 6.4(b), the right triangle with sides ρ, z, r shows that r = ρ sinφ, z = ρ cosφ.

Also since x = r cos θ and y = r sin θ, we have

x = ρ sinφ cos θ, y = ρ sinφ sin θ, z = ρ cosφ. (47)

Rectangular to Spherical

From (47) we have, x2 + y2 = ρ2 sin2 φ cos2 θ+ ρ2 sin2 φ sin2 θ = ρ2 sin2 φ(cos2 θ+ sin2 θ) =

ρ2 sin2 φ so that x2 + y2 + z2 = ρ2 sin2 φ + ρ2 cos2 φ = ρ2(sin2 φ + cos2 φ) = ρ2. Also

y/x = (ρ sinφ sin θ)/(ρ sinφ cos θ) = tan θ and cosφ = z/ρ so that, we have

ρ =
√
x2 + y2 + z2, tan θ =

y

x
, cosφ =

z√
x2 + y2 + z2

(48)
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Problem 6.1

(a) Find the rectangular coordinates of the point with cylindrical coordinates

(r, θ, z) =
(

4,
π

3
,−3

)
(b) Find the rectangular coordinates of the point with spherical coordinates

(ρ, θ, φ) =
(

4,
π

3
,
π

4

)
.

Solution. (a) Use (44) for conversion. We have

x = r cos θ = 4 cos
π

3
= 4× 1

2
= 2

y = r sin θ = 4 sin
π

3
= 4×

√
3

2
= 2
√

3

z = −3

Thus, the rectangular coordinates of the point are (x, y, z) = (2, 2
√

3,−3).

(b) Use (47) for conversion. We have

x = ρ sinφ cos θ = 4 sin
π

4
cos

π

3
= 4× 1√

2
× 1

2
=
√

2

y = ρ sinφ sin θ = 4 sin
π

4
sin

π

3
= 4× 1√

2
×
√

3

2
=
√

6

z = ρ cosφ = 4 cos
π

4
= 4× 1√

2
= 2
√

2.

The rectangular coordinates of the point are (x, y, z) = (
√

2,
√

6, 2
√

2).

Figure 6.5
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Problem 6.2

Find the spherical coordinates of the point that has rectangular coordinates

(x, y, z) = (4,−4, 4
√

6)

Solution. Use (48) for conversion. We have

ρ =
√
x2 + y2 + z2 =

√
42 + (−4)2 + (4

√
6)2 =

√
128 = 8

√
2

tan θ =
y

x
=
−4

4
= −1

cosφ =
z√

x2 + y2 + z2
=

4
√

6

8
√

2
=

√
3
√

2

2
√

2
=

√
3

2

We have tan θ = −1. Since 0 ≤ θ < 2π and x > 0, y < 0, the point (x, y, 0) lies on the

fourth quadrant of xy-plane. Hence we get

θ = 2π − tan−1(1)2π − π

4
=

7π

4
.

Also cosφ =
√
3
2

and 0 ≤ φ ≤ π so that φ = π
6
. Thus, the spherical coordinates of the

point are

(ρ, θ, φ) =

(
8
√

2,
7π

4
,
π

6

)
Figure 6.6
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EQUATIONS OF SURFACES IN CYLINDRICAL AND SPHER-

ICAL COORDINATES

Surfaces of revolution about the z-axis of a rectangular coordinate system usually have

simpler equations in cylindrical coordinates than in rectangular coordinates, and the equa-

tions of surfaces with symmetry about the origin are usually simpler in spherical coor-

dinates than in rectangular coordinates. For example, consider the upper nappe of the

circular cone whose equation in rectangular coordinates is

z =
√
x2 + y2

The corresponding equation in cylindrical coordinates can be obtained from the cylindrical-

to-rectangular conversion formulas in (44). This yields

z =
√

(r cos θ)2 + (r sin θ)2 =
√
r2 = |r| = r

so the equation of the cone in cylindrical coordinates is

z = r.

Similarly, the equation of the cone in spherical coordinates can be obtained as

ρ cosφ = ρ sinφ

which, if ρ 6= 0, can be rewritten as

tanφ = 1 or φ =
π

4

Geometrically, this tells us that the radial line from the origin to any point on the cone

makes an angle of π
4

with the z-axis.
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Figure 6.7

Problem 6.3

Find equations of the paraboloid

z = x2 + y2

in cylindrical and spherical coordinates.

Solution. Converting to cylindrical coordinates we get

z = (r cos θ)2 + (r sin θ)2 = r2.
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Converting to cylindrical coordinates we get

ρ cosφ = ρ2 sin2 φ

⇒ ρ =
cosφ

sin2 φ

= cosφ cosec2φ.
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